{"title":"基于合成孔径雷达成像技术的结构混凝土可靠性状态评估","authors":"Jones Owusu Twumasi, P. Destefano, J. Christian","doi":"10.1080/09349847.2020.1745341","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper proposes a probabilistic framework for assessing the condition of structural concrete with respect to moisture contained within cured concrete using a 10 GHz synthetic aperture radar (SAR) imaging system. Functional relationships between integrated SAR amplitude (SAR image index) and moisture content have been developed in previous studies utilizing experimental data collected in a controlled laboratory environment. These studies have shown that the integrated SAR amplitude (SAR image index) increases exponentially with an increase in moisture content at a given water-to-cement (w/c) ratio. In this study, a reliability model is developed using the integrated SAR amplitude and moisture content relationships from an experimental study which included concrete specimens with five different w/c ratios in addition to variations of critical functional parameters and Monte Carlo simulation techniques. The reliability model of moisture content detected with synthetic aperture radar in this study follows a normal distribution. An illustrative example is presented to demonstrate the reliability-based methods of measuring in-place moisture content using an integrated SAR amplitude. The findings from this study emphasize the need to consider the variation of parameters affecting nondestructive SAR imaging results for the purposes of diagnosing moisture content of aged structural concrete.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"54 1","pages":"216 - 235"},"PeriodicalIF":1.0000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reliability-Based Condition Assessment of Structural Concrete Using Synthetic Aperture Radar Imaging Techniques\",\"authors\":\"Jones Owusu Twumasi, P. Destefano, J. Christian\",\"doi\":\"10.1080/09349847.2020.1745341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper proposes a probabilistic framework for assessing the condition of structural concrete with respect to moisture contained within cured concrete using a 10 GHz synthetic aperture radar (SAR) imaging system. Functional relationships between integrated SAR amplitude (SAR image index) and moisture content have been developed in previous studies utilizing experimental data collected in a controlled laboratory environment. These studies have shown that the integrated SAR amplitude (SAR image index) increases exponentially with an increase in moisture content at a given water-to-cement (w/c) ratio. In this study, a reliability model is developed using the integrated SAR amplitude and moisture content relationships from an experimental study which included concrete specimens with five different w/c ratios in addition to variations of critical functional parameters and Monte Carlo simulation techniques. The reliability model of moisture content detected with synthetic aperture radar in this study follows a normal distribution. An illustrative example is presented to demonstrate the reliability-based methods of measuring in-place moisture content using an integrated SAR amplitude. The findings from this study emphasize the need to consider the variation of parameters affecting nondestructive SAR imaging results for the purposes of diagnosing moisture content of aged structural concrete.\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"54 1\",\"pages\":\"216 - 235\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2020.1745341\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2020.1745341","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
A Reliability-Based Condition Assessment of Structural Concrete Using Synthetic Aperture Radar Imaging Techniques
ABSTRACT This paper proposes a probabilistic framework for assessing the condition of structural concrete with respect to moisture contained within cured concrete using a 10 GHz synthetic aperture radar (SAR) imaging system. Functional relationships between integrated SAR amplitude (SAR image index) and moisture content have been developed in previous studies utilizing experimental data collected in a controlled laboratory environment. These studies have shown that the integrated SAR amplitude (SAR image index) increases exponentially with an increase in moisture content at a given water-to-cement (w/c) ratio. In this study, a reliability model is developed using the integrated SAR amplitude and moisture content relationships from an experimental study which included concrete specimens with five different w/c ratios in addition to variations of critical functional parameters and Monte Carlo simulation techniques. The reliability model of moisture content detected with synthetic aperture radar in this study follows a normal distribution. An illustrative example is presented to demonstrate the reliability-based methods of measuring in-place moisture content using an integrated SAR amplitude. The findings from this study emphasize the need to consider the variation of parameters affecting nondestructive SAR imaging results for the purposes of diagnosing moisture content of aged structural concrete.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.