利用位点占位障碍构建Ni1-xAlx体结构

C. Thesner, A. Falch, G. Cornelia, CE Van Sittert
{"title":"利用位点占位障碍构建Ni1-xAlx体结构","authors":"C. Thesner, A. Falch, G. Cornelia, CE Van Sittert","doi":"10.36303/satnt.2021cosaami.33","DOIUrl":null,"url":null,"abstract":"Raney nickel shows potential as an electrocatalyst for the oxygen evolution reaction (OER). However, the catalytic activity of Raney nickel varies with its properties. These properties are related to the composition of the bimetallic precursor used to synthesise Raney nickel. The bimetallic precursor consists of a combination of bimetallic phases. Various studies have been done on the well-known bimetallic phases, namely, Ni2Al3, NiAl and NiAl3. However, to get a more comprehensive understanding of the influence of the bimetallic precursor on the properties of Raney nickel, a larger spectrum of bimetallic phases needs to be evaluated. In this study, the Site Occupation Disorder (SOD) program was used to build solid-state structures (bimetallic phases) with various Ni1-xAlx bimetallic ratios. These Ni1-xAlx bimetallic phases were evaluated, and unique configurations for each Ni1-xAlx bimetallic ratio were obtained. The unique configurations were geometrically optimised using the General Utility Lattice Program (GULP) at 0K. These optimised unique configurations were thermodynamically evaluated over a range of 0.1K – 1200K, and the most stable configurations with a probability higher than 10% were identified. This study found that the stable non-homogeneous configurations fall within a range of 20% - 80% Ni content. A weight average combination of these configurations of the bimetallic phases will produce a non-homogeneous precursor with an average Ni content of 20% - 80%, which is in close agreement with experimental results. The approach in this study enables researchers to obtain a larger, repeatable spectrum of bimetallic phases for the investigation of Raney nickel precursors.","PeriodicalId":22035,"journal":{"name":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using site occupation disorder to build bulk structures of Ni1-xAlx\",\"authors\":\"C. Thesner, A. Falch, G. Cornelia, CE Van Sittert\",\"doi\":\"10.36303/satnt.2021cosaami.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raney nickel shows potential as an electrocatalyst for the oxygen evolution reaction (OER). However, the catalytic activity of Raney nickel varies with its properties. These properties are related to the composition of the bimetallic precursor used to synthesise Raney nickel. The bimetallic precursor consists of a combination of bimetallic phases. Various studies have been done on the well-known bimetallic phases, namely, Ni2Al3, NiAl and NiAl3. However, to get a more comprehensive understanding of the influence of the bimetallic precursor on the properties of Raney nickel, a larger spectrum of bimetallic phases needs to be evaluated. In this study, the Site Occupation Disorder (SOD) program was used to build solid-state structures (bimetallic phases) with various Ni1-xAlx bimetallic ratios. These Ni1-xAlx bimetallic phases were evaluated, and unique configurations for each Ni1-xAlx bimetallic ratio were obtained. The unique configurations were geometrically optimised using the General Utility Lattice Program (GULP) at 0K. These optimised unique configurations were thermodynamically evaluated over a range of 0.1K – 1200K, and the most stable configurations with a probability higher than 10% were identified. This study found that the stable non-homogeneous configurations fall within a range of 20% - 80% Ni content. A weight average combination of these configurations of the bimetallic phases will produce a non-homogeneous precursor with an average Ni content of 20% - 80%, which is in close agreement with experimental results. The approach in this study enables researchers to obtain a larger, repeatable spectrum of bimetallic phases for the investigation of Raney nickel precursors.\",\"PeriodicalId\":22035,\"journal\":{\"name\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36303/satnt.2021cosaami.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36303/satnt.2021cosaami.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Raney镍显示出作为析氧反应(OER)电催化剂的潜力。然而,镍的催化活性因其性质而异。这些性质与用于合成兰尼镍的双金属前驱体的组成有关。双金属前驱体由双金属相的组合组成。人们对众所周知的双金属相Ni2Al3、NiAl和NiAl3进行了各种各样的研究。然而,为了更全面地了解双金属前驱体对Raney镍性能的影响,需要对更大范围的双金属相进行评估。在本研究中,使用SOD程序构建具有不同Ni1-xAlx双金属比的固态结构(双金属相)。对这些Ni1-xAlx双金属相进行了评价,得到了不同Ni1-xAlx双金属相的独特构型。在0K时,使用通用实用程序晶格程序(GULP)对独特的配置进行几何优化。在0.1K - 1200K范围内对这些优化的独特构型进行了热力学评估,并确定了概率高于10%的最稳定构型。本研究发现,稳定的非均匀结构落在镍含量为20% - 80%的范围内。这些双金属相构型的重量平均组合将产生平均Ni含量为20% - 80%的非均匀前驱体,这与实验结果非常吻合。本研究中的方法使研究人员能够获得更大,可重复的双金属相光谱,用于研究Raney镍前体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using site occupation disorder to build bulk structures of Ni1-xAlx
Raney nickel shows potential as an electrocatalyst for the oxygen evolution reaction (OER). However, the catalytic activity of Raney nickel varies with its properties. These properties are related to the composition of the bimetallic precursor used to synthesise Raney nickel. The bimetallic precursor consists of a combination of bimetallic phases. Various studies have been done on the well-known bimetallic phases, namely, Ni2Al3, NiAl and NiAl3. However, to get a more comprehensive understanding of the influence of the bimetallic precursor on the properties of Raney nickel, a larger spectrum of bimetallic phases needs to be evaluated. In this study, the Site Occupation Disorder (SOD) program was used to build solid-state structures (bimetallic phases) with various Ni1-xAlx bimetallic ratios. These Ni1-xAlx bimetallic phases were evaluated, and unique configurations for each Ni1-xAlx bimetallic ratio were obtained. The unique configurations were geometrically optimised using the General Utility Lattice Program (GULP) at 0K. These optimised unique configurations were thermodynamically evaluated over a range of 0.1K – 1200K, and the most stable configurations with a probability higher than 10% were identified. This study found that the stable non-homogeneous configurations fall within a range of 20% - 80% Ni content. A weight average combination of these configurations of the bimetallic phases will produce a non-homogeneous precursor with an average Ni content of 20% - 80%, which is in close agreement with experimental results. The approach in this study enables researchers to obtain a larger, repeatable spectrum of bimetallic phases for the investigation of Raney nickel precursors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信