前驱体热解合成B4C陶瓷的最佳温度、时间和气氛

Seyed Faridaddin Feiz, L. Nikzad, H. Majidian, E. Salahi
{"title":"前驱体热解合成B4C陶瓷的最佳温度、时间和气氛","authors":"Seyed Faridaddin Feiz, L. Nikzad, H. Majidian, E. Salahi","doi":"10.53063/synsint.2022.23119","DOIUrl":null,"url":null,"abstract":"In this paper, the variables of the pyrolysis operation such as temperature, time, and atmosphere were studied and optimized. At first, the effect of increasing pyrolysis time at lower temperatures was investigated to understand the mutual influence of pyrolysis time and temperature in enhancing the efficiency of B4C synthesis. Then, three pyrolysis atmospheres were selected to find the optimal conditions: burial method in box furnace (air), pyrolysis in tubular furnace (argon), and pyrolysis in box furnace (air). The pyrolyzed powders were finally located inside the tubular furnace at 1500 °C for 4 h under argon atmosphere to synthesize B4C ceramics. X-ray diffractometry (XRD) was employed to determine the optimal processing conditions. The temperature of 600 °C and the holding time of 2 h were selected as the optimal pyrolysis conditions. Meanwhile, the burial method was chosen as the best atmosphere despite having a higher percentage of impurity because of the much lower cost compared to the argon atmosphere.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimum temperature, time and atmosphere of precursor pyrolysis for synthesis of B4C ceramics\",\"authors\":\"Seyed Faridaddin Feiz, L. Nikzad, H. Majidian, E. Salahi\",\"doi\":\"10.53063/synsint.2022.23119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the variables of the pyrolysis operation such as temperature, time, and atmosphere were studied and optimized. At first, the effect of increasing pyrolysis time at lower temperatures was investigated to understand the mutual influence of pyrolysis time and temperature in enhancing the efficiency of B4C synthesis. Then, three pyrolysis atmospheres were selected to find the optimal conditions: burial method in box furnace (air), pyrolysis in tubular furnace (argon), and pyrolysis in box furnace (air). The pyrolyzed powders were finally located inside the tubular furnace at 1500 °C for 4 h under argon atmosphere to synthesize B4C ceramics. X-ray diffractometry (XRD) was employed to determine the optimal processing conditions. The temperature of 600 °C and the holding time of 2 h were selected as the optimal pyrolysis conditions. Meanwhile, the burial method was chosen as the best atmosphere despite having a higher percentage of impurity because of the much lower cost compared to the argon atmosphere.\",\"PeriodicalId\":22113,\"journal\":{\"name\":\"Synthesis and Sintering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis and Sintering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53063/synsint.2022.23119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Sintering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53063/synsint.2022.23119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对热解操作的温度、时间、气氛等变量进行了研究和优化。首先,研究了在较低温度下增加热解时间对B4C合成效率的影响,了解热解时间和温度对提高B4C合成效率的相互影响。然后选择3种热解气氛:箱式炉(空气)埋法、管式炉(氩气)热解、箱式炉(空气)热解。最后将煅烧后的粉末置于管状炉内,在1500℃氩气环境下焙烧4h,合成B4C陶瓷。采用x射线衍射(XRD)确定了最佳工艺条件。选择温度为600℃,保温时间为2 h为最佳热解条件。同时,尽管埋藏法的杂质含量较高,但与氩气相比,埋藏法的成本要低得多,因此被选为最佳气氛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimum temperature, time and atmosphere of precursor pyrolysis for synthesis of B4C ceramics
In this paper, the variables of the pyrolysis operation such as temperature, time, and atmosphere were studied and optimized. At first, the effect of increasing pyrolysis time at lower temperatures was investigated to understand the mutual influence of pyrolysis time and temperature in enhancing the efficiency of B4C synthesis. Then, three pyrolysis atmospheres were selected to find the optimal conditions: burial method in box furnace (air), pyrolysis in tubular furnace (argon), and pyrolysis in box furnace (air). The pyrolyzed powders were finally located inside the tubular furnace at 1500 °C for 4 h under argon atmosphere to synthesize B4C ceramics. X-ray diffractometry (XRD) was employed to determine the optimal processing conditions. The temperature of 600 °C and the holding time of 2 h were selected as the optimal pyrolysis conditions. Meanwhile, the burial method was chosen as the best atmosphere despite having a higher percentage of impurity because of the much lower cost compared to the argon atmosphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信