用功率流控制器控制电力线串联阻抗

IF 0.6 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Aleksandar Markovic, S. Vukosavic
{"title":"用功率流控制器控制电力线串联阻抗","authors":"Aleksandar Markovic, S. Vukosavic","doi":"10.2298/fuee2203421m","DOIUrl":null,"url":null,"abstract":"In this paper, the possibility of unified power flow controller (UPFC) to modulate both series resistance R and series reactance X of an overhead power line is discussed. The classical power flow control system of the UFPC is modified in the manner that standard input references signals (active and reactive powers) are replaced by reference signals of series resistance and reactance. Using the procedure described in this work, the reference signals for active and reactive powers are generated indirectly. The operation of UPFC in proposed operation mode is analyzed using computer simulation, based on a model of single machine infinite bus (SMIB) with constant impedance loads and two parallel lines. The goal is to show that UPFC is capable to control both series line parameters (R and X) directly and independently by means of a simple control system without additional decoupling controllers. An additional task is to show that power flows can be indirectly controlled this way. The step response of series line resistance and reactance is used to validate the operation of the proposed control system. The obtained results clearly show that all goals are fulfilled.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control of series impedance of power lines using power flow controller\",\"authors\":\"Aleksandar Markovic, S. Vukosavic\",\"doi\":\"10.2298/fuee2203421m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the possibility of unified power flow controller (UPFC) to modulate both series resistance R and series reactance X of an overhead power line is discussed. The classical power flow control system of the UFPC is modified in the manner that standard input references signals (active and reactive powers) are replaced by reference signals of series resistance and reactance. Using the procedure described in this work, the reference signals for active and reactive powers are generated indirectly. The operation of UPFC in proposed operation mode is analyzed using computer simulation, based on a model of single machine infinite bus (SMIB) with constant impedance loads and two parallel lines. The goal is to show that UPFC is capable to control both series line parameters (R and X) directly and independently by means of a simple control system without additional decoupling controllers. An additional task is to show that power flows can be indirectly controlled this way. The step response of series line resistance and reactance is used to validate the operation of the proposed control system. The obtained results clearly show that all goals are fulfilled.\",\"PeriodicalId\":44296,\"journal\":{\"name\":\"Facta Universitatis-Series Electronics and Energetics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Electronics and Energetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/fuee2203421m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Electronics and Energetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fuee2203421m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了统一潮流控制器(UPFC)同时调制架空线路串联电阻R和串联电抗X的可能性。对UFPC经典潮流控制系统进行了改进,将标准输入参考信号(有功和无功)替换为串联电阻和电抗的参考信号。利用本文所述的程序,间接地产生有功和无功功率的参考信号。基于具有恒阻抗负载和两条平行线的单机无限母线(SMIB)模型,利用计算机仿真分析了UPFC在该工作模式下的运行情况。目标是表明UPFC能够通过一个简单的控制系统直接和独立地控制串联线路参数(R和X),而无需额外的解耦控制器。另一项任务是证明可以通过这种方式间接控制功率流。利用串联线路电阻和电抗的阶跃响应来验证所提出的控制系统的运行。获得的结果清楚地表明,所有目标都实现了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of series impedance of power lines using power flow controller
In this paper, the possibility of unified power flow controller (UPFC) to modulate both series resistance R and series reactance X of an overhead power line is discussed. The classical power flow control system of the UFPC is modified in the manner that standard input references signals (active and reactive powers) are replaced by reference signals of series resistance and reactance. Using the procedure described in this work, the reference signals for active and reactive powers are generated indirectly. The operation of UPFC in proposed operation mode is analyzed using computer simulation, based on a model of single machine infinite bus (SMIB) with constant impedance loads and two parallel lines. The goal is to show that UPFC is capable to control both series line parameters (R and X) directly and independently by means of a simple control system without additional decoupling controllers. An additional task is to show that power flows can be indirectly controlled this way. The step response of series line resistance and reactance is used to validate the operation of the proposed control system. The obtained results clearly show that all goals are fulfilled.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Facta Universitatis-Series Electronics and Energetics
Facta Universitatis-Series Electronics and Energetics ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
16.70%
发文量
10
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信