神经随机效用:将基本神经观察与随机选择行为联系起来

IF 1.6 4区 医学 Q2 ECONOMICS
Ryan Webb, I. Levy, Stephanie C. Lazzaro, R. Rutledge, P. Glimcher
{"title":"神经随机效用:将基本神经观察与随机选择行为联系起来","authors":"Ryan Webb, I. Levy, Stephanie C. Lazzaro, R. Rutledge, P. Glimcher","doi":"10.1037/npe0000101","DOIUrl":null,"url":null,"abstract":"We assess whether a cardinal model can be used to relate neural observables to stochastic choice behavior. We develop a general empirical framework for relating any neural observable to choice prediction and propose a means of benchmarking their predictive power. In a previous study, measurements of neural activity were made while subjects considered consumer goods. Here, we find that neural activity predicts choice behavior with the degree of stochasticity in choice related to the cardinality of the measurement. However, we also find that current methods have a significant degree of measurement error which severely limits their inferential and predictive performance.","PeriodicalId":45695,"journal":{"name":"Journal of Neuroscience Psychology and Economics","volume":"58 1","pages":"45–72"},"PeriodicalIF":1.6000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Neural Random Utility: Relating Cardinal Neural Observables to Stochastic Choice Behavior\",\"authors\":\"Ryan Webb, I. Levy, Stephanie C. Lazzaro, R. Rutledge, P. Glimcher\",\"doi\":\"10.1037/npe0000101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We assess whether a cardinal model can be used to relate neural observables to stochastic choice behavior. We develop a general empirical framework for relating any neural observable to choice prediction and propose a means of benchmarking their predictive power. In a previous study, measurements of neural activity were made while subjects considered consumer goods. Here, we find that neural activity predicts choice behavior with the degree of stochasticity in choice related to the cardinality of the measurement. However, we also find that current methods have a significant degree of measurement error which severely limits their inferential and predictive performance.\",\"PeriodicalId\":45695,\"journal\":{\"name\":\"Journal of Neuroscience Psychology and Economics\",\"volume\":\"58 1\",\"pages\":\"45–72\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Psychology and Economics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1037/npe0000101\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Psychology and Economics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1037/npe0000101","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 22

摘要

我们评估是否一个基本模型可以用来将神经观察到的随机选择行为。我们开发了一个通用的经验框架,将任何神经观察与选择预测联系起来,并提出了一种对其预测能力进行基准测试的方法。在之前的一项研究中,研究人员在受试者考虑消费品时测量了他们的神经活动。在这里,我们发现神经活动预测选择行为的随机性程度与测量的基数有关。然而,我们也发现目前的方法有很大程度的测量误差,这严重限制了它们的推理和预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Random Utility: Relating Cardinal Neural Observables to Stochastic Choice Behavior
We assess whether a cardinal model can be used to relate neural observables to stochastic choice behavior. We develop a general empirical framework for relating any neural observable to choice prediction and propose a means of benchmarking their predictive power. In a previous study, measurements of neural activity were made while subjects considered consumer goods. Here, we find that neural activity predicts choice behavior with the degree of stochasticity in choice related to the cardinality of the measurement. However, we also find that current methods have a significant degree of measurement error which severely limits their inferential and predictive performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
28.60%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信