亚临界长程随机聚类和波茨模型中相关函数的尖锐渐近性

Y. Aoun
{"title":"亚临界长程随机聚类和波茨模型中相关函数的尖锐渐近性","authors":"Y. Aoun","doi":"10.1214/21-ECP390","DOIUrl":null,"url":null,"abstract":"For a family of random-cluster models with cluster weights $q\\geq 1$, we prove that the probability that $0$ is connected to $x$ is asymptotically equal to $\\tfrac{1}{q}\\chi(\\beta)^{2}\\beta J_{0,x}$. The method developed in this article can be applied to any spin model for which there exists a random-cluster representation which is one-monotonic.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sharp asymptotics of correlation functions in the subcritical long-range random-cluster and Potts models\",\"authors\":\"Y. Aoun\",\"doi\":\"10.1214/21-ECP390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a family of random-cluster models with cluster weights $q\\\\geq 1$, we prove that the probability that $0$ is connected to $x$ is asymptotically equal to $\\\\tfrac{1}{q}\\\\chi(\\\\beta)^{2}\\\\beta J_{0,x}$. The method developed in this article can be applied to any spin model for which there exists a random-cluster representation which is one-monotonic.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ECP390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ECP390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对于一类簇权为$q\geq 1$的随机聚类模型,我们证明了$0$与$x$相连接的概率渐近等于$\tfrac{1}{q}\chi(\beta)^{2}\beta J_{0,x}$。本文提出的方法可以应用于任何存在单单调随机簇表示的自旋模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp asymptotics of correlation functions in the subcritical long-range random-cluster and Potts models
For a family of random-cluster models with cluster weights $q\geq 1$, we prove that the probability that $0$ is connected to $x$ is asymptotically equal to $\tfrac{1}{q}\chi(\beta)^{2}\beta J_{0,x}$. The method developed in this article can be applied to any spin model for which there exists a random-cluster representation which is one-monotonic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信