含噪地震记录的时频谱估计

IF 0.5 Q4 ENGINEERING, GEOLOGICAL
V. Devi, M. Sharma
{"title":"含噪地震记录的时频谱估计","authors":"V. Devi, M. Sharma","doi":"10.4018/IJGEE.2016010102","DOIUrl":null,"url":null,"abstract":"Time–Frequency analyses have the advantage of explaining the signal features in both time domain and frequency domain. This paper explores the performance of Time–Frequency analyses on noisy seismograms acquired from seismically active region in NW Himalayan. The Short Term Fourier Transform, Gabor Transform, Wavelet Transform and Wigner-Ville Distribution have been used in the present study to carry out Time-Frequency analyses. Parametric study has been carried out by varying basic parameters viz. sampling, window size and types. Wavelet analysis (Continuous Wavelet Transform) has been studied with different type of wavelets. The seismograms have been stacked in time-frequency domain using Gabor Transform and have been converted using Discrete Gabor Expansion techniques. The Spectrograms reveals better spectral estimation in time-frequency domain than Fourier Transform and hence recommended to estimate dominate frequency components, phase marking and timings of phase. The time of occurrence of frequency component corresponding to maximum energy burst can be identified on seismograms","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"20 1","pages":"19-32"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spectral Estimation of Noisy Seismogram using Time-Frequency Analyses\",\"authors\":\"V. Devi, M. Sharma\",\"doi\":\"10.4018/IJGEE.2016010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time–Frequency analyses have the advantage of explaining the signal features in both time domain and frequency domain. This paper explores the performance of Time–Frequency analyses on noisy seismograms acquired from seismically active region in NW Himalayan. The Short Term Fourier Transform, Gabor Transform, Wavelet Transform and Wigner-Ville Distribution have been used in the present study to carry out Time-Frequency analyses. Parametric study has been carried out by varying basic parameters viz. sampling, window size and types. Wavelet analysis (Continuous Wavelet Transform) has been studied with different type of wavelets. The seismograms have been stacked in time-frequency domain using Gabor Transform and have been converted using Discrete Gabor Expansion techniques. The Spectrograms reveals better spectral estimation in time-frequency domain than Fourier Transform and hence recommended to estimate dominate frequency components, phase marking and timings of phase. The time of occurrence of frequency component corresponding to maximum energy burst can be identified on seismograms\",\"PeriodicalId\":42473,\"journal\":{\"name\":\"International Journal of Geotechnical Earthquake Engineering\",\"volume\":\"20 1\",\"pages\":\"19-32\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geotechnical Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGEE.2016010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGEE.2016010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 4

摘要

时频分析的优点是可以同时解释信号的时域和频域特征。本文探讨了喜马拉雅西北地震活动区噪声地震记录时频分析的性能。本文采用短时傅里叶变换、Gabor变换、小波变换和Wigner-Ville分布进行时频分析。通过改变基本参数即采样、窗口大小和类型进行了参数化研究。用不同类型的小波研究了小波分析(连续小波变换)。利用Gabor变换在时频域进行了地震记录的叠加,并利用离散Gabor展开技术进行了转换。该谱图在时频域中比傅里叶变换显示出更好的谱估计,因此建议估计主频率分量、相位标记和相位定时。最大能量暴对应的频率分量的发生时间可以在地震图上识别出来
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Estimation of Noisy Seismogram using Time-Frequency Analyses
Time–Frequency analyses have the advantage of explaining the signal features in both time domain and frequency domain. This paper explores the performance of Time–Frequency analyses on noisy seismograms acquired from seismically active region in NW Himalayan. The Short Term Fourier Transform, Gabor Transform, Wavelet Transform and Wigner-Ville Distribution have been used in the present study to carry out Time-Frequency analyses. Parametric study has been carried out by varying basic parameters viz. sampling, window size and types. Wavelet analysis (Continuous Wavelet Transform) has been studied with different type of wavelets. The seismograms have been stacked in time-frequency domain using Gabor Transform and have been converted using Discrete Gabor Expansion techniques. The Spectrograms reveals better spectral estimation in time-frequency domain than Fourier Transform and hence recommended to estimate dominate frequency components, phase marking and timings of phase. The time of occurrence of frequency component corresponding to maximum energy burst can be identified on seismograms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
25.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信