基于概率四叉树的自主移动机器人导引与控制环境映射

C. Cocaud, A. Jnifene
{"title":"基于概率四叉树的自主移动机器人导引与控制环境映射","authors":"C. Cocaud, A. Jnifene","doi":"10.2316/Journal.201.2011.4.201-2292","DOIUrl":null,"url":null,"abstract":"This paper presents the implementation of an environment mapping technique based on a probabilistic quadtree which records the location of static and dynamic obstacles, as well as the certainty over each obstacle's estimated position. The quadtree-based map is updated online (i.e. near-real time) based on multi-sensor feeds originating from one to three X80 mobile robots operating simultaneously. The probabilistic quadtree map is part of a guidance and navigation control system which combines a Genetic Algorithm-based global path planner and a Potential Field local controller. The centralized map is shared by all mobile robots although each robot has an independent controller. Performance of the proposed method for this guidance and navigation control system is demonstrated experimentally with the Dr. Robot's ™ wireless X80 mobile robots.","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"27 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Environment mapping using probabilistic quadtree for the guidance and control of autonomous mobile robots\",\"authors\":\"C. Cocaud, A. Jnifene\",\"doi\":\"10.2316/Journal.201.2011.4.201-2292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the implementation of an environment mapping technique based on a probabilistic quadtree which records the location of static and dynamic obstacles, as well as the certainty over each obstacle's estimated position. The quadtree-based map is updated online (i.e. near-real time) based on multi-sensor feeds originating from one to three X80 mobile robots operating simultaneously. The probabilistic quadtree map is part of a guidance and navigation control system which combines a Genetic Algorithm-based global path planner and a Potential Field local controller. The centralized map is shared by all mobile robots although each robot has an independent controller. Performance of the proposed method for this guidance and navigation control system is demonstrated experimentally with the Dr. Robot's ™ wireless X80 mobile robots.\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"27 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.2316/Journal.201.2011.4.201-2292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.2316/Journal.201.2011.4.201-2292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于概率四叉树的环境映射技术,该技术记录了静态和动态障碍物的位置,以及每个障碍物估计位置的确定性。基于四叉树的地图在线更新(即近实时),基于来自一到三个同时操作的X80移动机器人的多传感器馈送。概率四叉树映射是基于遗传算法的全局路径规划器和势场局部控制器相结合的制导导航控制系统的组成部分。尽管每个机器人都有一个独立的控制器,但所有移动机器人共享集中式地图。通过Dr. Robot™无线X80移动机器人的实验验证了所提出的制导和导航控制系统方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environment mapping using probabilistic quadtree for the guidance and control of autonomous mobile robots
This paper presents the implementation of an environment mapping technique based on a probabilistic quadtree which records the location of static and dynamic obstacles, as well as the certainty over each obstacle's estimated position. The quadtree-based map is updated online (i.e. near-real time) based on multi-sensor feeds originating from one to three X80 mobile robots operating simultaneously. The probabilistic quadtree map is part of a guidance and navigation control system which combines a Genetic Algorithm-based global path planner and a Potential Field local controller. The centralized map is shared by all mobile robots although each robot has an independent controller. Performance of the proposed method for this guidance and navigation control system is demonstrated experimentally with the Dr. Robot's ™ wireless X80 mobile robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信