I. Semeniuk, T. Pokynbroda, V. Kochubei, H. Midyana, O. Karpenko, V. Skorokhoda
{"title":"聚羟基烷酸酯的生物合成及特性研究。固氮菌vinelandii N-15的聚羟基丁酸盐","authors":"I. Semeniuk, T. Pokynbroda, V. Kochubei, H. Midyana, O. Karpenko, V. Skorokhoda","doi":"10.23939/chcht14.04.463","DOIUrl":null,"url":null,"abstract":"The biosynthesis of cellular polymers of Azotobacter vinelandii N-15 strain using molasses as a carbon source has been optimized. The highest yield of polymer (25.8 % of cell mass) was obtained on a nutrient medium with a molasses concentration of 50 g/l. Using TL-chromatography and IR-spectroscopy the obtained product was identified as polyhydroxybutyrate (PHB), and its properties were investigated. The wetting contact angle was used to characterize the biopolymer film surface properties. According to the results of thermal and thermomechanical studies, it was found that the obtained РHB is characterized by a high thermal stability and heat resistance: the melting point is 462 K; deep destruction and thermooxidative processes begin at the temperatures above 567 K.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"27 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Biosynthesis and Characteristics of Polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter vinelandii N-15\",\"authors\":\"I. Semeniuk, T. Pokynbroda, V. Kochubei, H. Midyana, O. Karpenko, V. Skorokhoda\",\"doi\":\"10.23939/chcht14.04.463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The biosynthesis of cellular polymers of Azotobacter vinelandii N-15 strain using molasses as a carbon source has been optimized. The highest yield of polymer (25.8 % of cell mass) was obtained on a nutrient medium with a molasses concentration of 50 g/l. Using TL-chromatography and IR-spectroscopy the obtained product was identified as polyhydroxybutyrate (PHB), and its properties were investigated. The wetting contact angle was used to characterize the biopolymer film surface properties. According to the results of thermal and thermomechanical studies, it was found that the obtained РHB is characterized by a high thermal stability and heat resistance: the melting point is 462 K; deep destruction and thermooxidative processes begin at the temperatures above 567 K.\",\"PeriodicalId\":9793,\"journal\":{\"name\":\"Chemistry & Chemical Technology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & Chemical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/chcht14.04.463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/chcht14.04.463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biosynthesis and Characteristics of Polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter vinelandii N-15
The biosynthesis of cellular polymers of Azotobacter vinelandii N-15 strain using molasses as a carbon source has been optimized. The highest yield of polymer (25.8 % of cell mass) was obtained on a nutrient medium with a molasses concentration of 50 g/l. Using TL-chromatography and IR-spectroscopy the obtained product was identified as polyhydroxybutyrate (PHB), and its properties were investigated. The wetting contact angle was used to characterize the biopolymer film surface properties. According to the results of thermal and thermomechanical studies, it was found that the obtained РHB is characterized by a high thermal stability and heat resistance: the melting point is 462 K; deep destruction and thermooxidative processes begin at the temperatures above 567 K.