用响应面法分析渗硼AISI 430的渗硼层厚度

IF 2.2 Q1 MATHEMATICS, APPLIED
Turker Turkoglu, I. Ay
{"title":"用响应面法分析渗硼AISI 430的渗硼层厚度","authors":"Turker Turkoglu, I. Ay","doi":"10.11121/IJOCTA.01.2019.00660","DOIUrl":null,"url":null,"abstract":"The boriding process is a thermochemical surface treatment which can be applied to many iron and non-ferrous materials and improves the properties of the material such as hardness, wear resistance. In the present study, the layer thickness values of the boronized AISI 430 material were optimized using the Response Surface Methodology. Mathematical model was constructed using parameters such as temperature and time and the results were analyzed comparatively. As a result of the analysis, the optimum layer thickness value for AISI 430 material was obtained as 39.0183 µm for 1000 ºC and 5.9h and it was determined that the boriding temperature and time are effective on the boride layer formation process of AISI 430 material. Finally, the Response Surface Methodology and Face Centered Central Composite Design have been effectively applied to the boriding process.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"29 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of boride layer thickness of borided AISI 430 by response surface methodology\",\"authors\":\"Turker Turkoglu, I. Ay\",\"doi\":\"10.11121/IJOCTA.01.2019.00660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The boriding process is a thermochemical surface treatment which can be applied to many iron and non-ferrous materials and improves the properties of the material such as hardness, wear resistance. In the present study, the layer thickness values of the boronized AISI 430 material were optimized using the Response Surface Methodology. Mathematical model was constructed using parameters such as temperature and time and the results were analyzed comparatively. As a result of the analysis, the optimum layer thickness value for AISI 430 material was obtained as 39.0183 µm for 1000 ºC and 5.9h and it was determined that the boriding temperature and time are effective on the boride layer formation process of AISI 430 material. Finally, the Response Surface Methodology and Face Centered Central Composite Design have been effectively applied to the boriding process.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2019-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/IJOCTA.01.2019.00660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/IJOCTA.01.2019.00660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

渗硼工艺是一种热化学表面处理方法,可应用于许多铁和有色金属材料,提高材料的硬度、耐磨性等性能。本研究采用响应面法优化硼化AISI 430材料的层厚值。采用温度、时间等参数建立了数学模型,并对结果进行了比较分析。分析结果表明,在1000℃、5.9h的渗硼条件下,AISI 430材料的最佳渗层厚度为39.0183µm,确定了渗硼温度和渗硼时间对AISI 430材料的渗硼层形成过程是有效的。最后,将响应面法和面心中心复合设计有效地应用于渗硼工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of boride layer thickness of borided AISI 430 by response surface methodology
The boriding process is a thermochemical surface treatment which can be applied to many iron and non-ferrous materials and improves the properties of the material such as hardness, wear resistance. In the present study, the layer thickness values of the boronized AISI 430 material were optimized using the Response Surface Methodology. Mathematical model was constructed using parameters such as temperature and time and the results were analyzed comparatively. As a result of the analysis, the optimum layer thickness value for AISI 430 material was obtained as 39.0183 µm for 1000 ºC and 5.9h and it was determined that the boriding temperature and time are effective on the boride layer formation process of AISI 430 material. Finally, the Response Surface Methodology and Face Centered Central Composite Design have been effectively applied to the boriding process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信