为什么大时间步进法求解Cahn-Hilliard方程是稳定的

Dong Li
{"title":"为什么大时间步进法求解Cahn-Hilliard方程是稳定的","authors":"Dong Li","doi":"10.1090/mcom/3768","DOIUrl":null,"url":null,"abstract":"We consider the Cahn-Hilliard equation with standard double-well potential. We employ a prototypical class of first order in time semi-implicit methods with implicit treatment of the linear dissipation term and explicit extrapolation of the nonlinear term. When the dissipation coefficient is held small, a conventional wisdom is to add a judiciously chosen stabilization term in order to afford relatively large time stepping and speed up the simulation. In practical numerical implementations it has been long observed that the resulting system exhibits remarkable stability properties in the regime where the stabilization parameter is O(1), the dissipation coefficient is vanishingly small and the size of the time step is moderately large. In this work we develop a new stability theory to address this perplexing phenomenon.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"118 1","pages":"2501-2515"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Why large time-stepping methods for the Cahn-Hilliard equation is stable\",\"authors\":\"Dong Li\",\"doi\":\"10.1090/mcom/3768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cahn-Hilliard equation with standard double-well potential. We employ a prototypical class of first order in time semi-implicit methods with implicit treatment of the linear dissipation term and explicit extrapolation of the nonlinear term. When the dissipation coefficient is held small, a conventional wisdom is to add a judiciously chosen stabilization term in order to afford relatively large time stepping and speed up the simulation. In practical numerical implementations it has been long observed that the resulting system exhibits remarkable stability properties in the regime where the stabilization parameter is O(1), the dissipation coefficient is vanishingly small and the size of the time step is moderately large. In this work we develop a new stability theory to address this perplexing phenomenon.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"118 1\",\"pages\":\"2501-2515\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑具有标准双阱势的Cahn-Hilliard方程。采用一类典型的一阶时间半隐式方法,对线性耗散项进行隐式处理,对非线性项进行显式外推。当耗散系数保持较小时,传统的做法是添加一个明智选择的稳定项,以提供相对较大的时间步进并加快模拟速度。在实际的数值实现中,人们长期观察到,在稳定参数为0(1)、耗散系数很小、时间步长适中的情况下,所得到的系统表现出显著的稳定性。在这项工作中,我们发展了一个新的稳定性理论来解决这个令人困惑的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why large time-stepping methods for the Cahn-Hilliard equation is stable
We consider the Cahn-Hilliard equation with standard double-well potential. We employ a prototypical class of first order in time semi-implicit methods with implicit treatment of the linear dissipation term and explicit extrapolation of the nonlinear term. When the dissipation coefficient is held small, a conventional wisdom is to add a judiciously chosen stabilization term in order to afford relatively large time stepping and speed up the simulation. In practical numerical implementations it has been long observed that the resulting system exhibits remarkable stability properties in the regime where the stabilization parameter is O(1), the dissipation coefficient is vanishingly small and the size of the time step is moderately large. In this work we develop a new stability theory to address this perplexing phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信