Xin Zhang, Shuaitao Hu, Shixiang Zhang, Huaxin Zhu, M. Cao, Qiang Wang, D. Sumarac
{"title":"双调谐质量阻尼器垂直索的模态分析与振动控制","authors":"Xin Zhang, Shuaitao Hu, Shixiang Zhang, Huaxin Zhu, M. Cao, Qiang Wang, D. Sumarac","doi":"10.1177/14613484231182487","DOIUrl":null,"url":null,"abstract":"This paper proposes a vibration model for modal analysis and vibration control of a vertical cable-dual tuned mass damper (C-DTMD) coupled system. The proposed model introduces several non-dimensional parameters to describe the in-plane vibration of the coupled system. Moreover, the phenomenon of modal split is comprehensively studied to present the complex vibration modes. Parameter analysis is conducted to show the influence of length ratio, mass ratio, damping ratio, and frequency ratio on vibration reduction. In addition, the theoretical model is verified using finite element methods. A practical vertical cable in Jiangyin Bridge with designed wind loads is chosen as a numerical example. The results show that DTMD devices can effectively reduce the modal vibration and have great potential for multi-mode vibration control of vertical cables in suspension bridges. The proposed model can accurately describe the in-plane vibration modes of C-DTMD systems and provides a basis for the optimal design of damper parameters.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":"1988 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal analysis and vibration control of a vertical cable with dual tuned mass dampers\",\"authors\":\"Xin Zhang, Shuaitao Hu, Shixiang Zhang, Huaxin Zhu, M. Cao, Qiang Wang, D. Sumarac\",\"doi\":\"10.1177/14613484231182487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a vibration model for modal analysis and vibration control of a vertical cable-dual tuned mass damper (C-DTMD) coupled system. The proposed model introduces several non-dimensional parameters to describe the in-plane vibration of the coupled system. Moreover, the phenomenon of modal split is comprehensively studied to present the complex vibration modes. Parameter analysis is conducted to show the influence of length ratio, mass ratio, damping ratio, and frequency ratio on vibration reduction. In addition, the theoretical model is verified using finite element methods. A practical vertical cable in Jiangyin Bridge with designed wind loads is chosen as a numerical example. The results show that DTMD devices can effectively reduce the modal vibration and have great potential for multi-mode vibration control of vertical cables in suspension bridges. The proposed model can accurately describe the in-plane vibration modes of C-DTMD systems and provides a basis for the optimal design of damper parameters.\",\"PeriodicalId\":56067,\"journal\":{\"name\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"volume\":\"1988 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14613484231182487\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231182487","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Modal analysis and vibration control of a vertical cable with dual tuned mass dampers
This paper proposes a vibration model for modal analysis and vibration control of a vertical cable-dual tuned mass damper (C-DTMD) coupled system. The proposed model introduces several non-dimensional parameters to describe the in-plane vibration of the coupled system. Moreover, the phenomenon of modal split is comprehensively studied to present the complex vibration modes. Parameter analysis is conducted to show the influence of length ratio, mass ratio, damping ratio, and frequency ratio on vibration reduction. In addition, the theoretical model is verified using finite element methods. A practical vertical cable in Jiangyin Bridge with designed wind loads is chosen as a numerical example. The results show that DTMD devices can effectively reduce the modal vibration and have great potential for multi-mode vibration control of vertical cables in suspension bridges. The proposed model can accurately describe the in-plane vibration modes of C-DTMD systems and provides a basis for the optimal design of damper parameters.
期刊介绍:
Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.