Maxwell-Stokes型方程弱解存在的充分必要条件

Q4 Mathematics
J. Aramaki
{"title":"Maxwell-Stokes型方程弱解存在的充分必要条件","authors":"J. Aramaki","doi":"10.37622/adsa/16.1.2021.133-157","DOIUrl":null,"url":null,"abstract":"In this paper, we derive necessary and sufficient conditions for the existence of a weak solution to the Maxwell-Stokes type equation associated with slip-Navier boundary condition. Our equation is nonlinear and contains, so called, p-curlcurl system. Moreover, we give a result on the continuous dependence of the weak solution on the data. 2010 Mathematics Subject Classification: 35A05, 35H30, 35A15, 35D05","PeriodicalId":36469,"journal":{"name":"Advances in Dynamical Systems and Applications","volume":"71 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Necessary and Sufficient Conditions for the Existence of aWeak Solution to the Maxwell-Stokes Type Equation\",\"authors\":\"J. Aramaki\",\"doi\":\"10.37622/adsa/16.1.2021.133-157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive necessary and sufficient conditions for the existence of a weak solution to the Maxwell-Stokes type equation associated with slip-Navier boundary condition. Our equation is nonlinear and contains, so called, p-curlcurl system. Moreover, we give a result on the continuous dependence of the weak solution on the data. 2010 Mathematics Subject Classification: 35A05, 35H30, 35A15, 35D05\",\"PeriodicalId\":36469,\"journal\":{\"name\":\"Advances in Dynamical Systems and Applications\",\"volume\":\"71 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Dynamical Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37622/adsa/16.1.2021.133-157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Dynamical Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/adsa/16.1.2021.133-157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了带有滑移-纳维边界条件的Maxwell-Stokes型方程弱解存在的充分必要条件。我们的方程是非线性的,包含p-curlcurl系统。此外,我们还给出了弱解对数据的连续依赖的一个结果。2010数学学科分类:35A05、35H30、35A15、35D05
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Necessary and Sufficient Conditions for the Existence of aWeak Solution to the Maxwell-Stokes Type Equation
In this paper, we derive necessary and sufficient conditions for the existence of a weak solution to the Maxwell-Stokes type equation associated with slip-Navier boundary condition. Our equation is nonlinear and contains, so called, p-curlcurl system. Moreover, we give a result on the continuous dependence of the weak solution on the data. 2010 Mathematics Subject Classification: 35A05, 35H30, 35A15, 35D05
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信