基于小波变换和先进学习技术的超分辨率

Yi-Wen Chen, Jian-Jiun Ding
{"title":"基于小波变换和先进学习技术的超分辨率","authors":"Yi-Wen Chen, Jian-Jiun Ding","doi":"10.1109/ISPACS48206.2019.8986242","DOIUrl":null,"url":null,"abstract":"Image super-resolution aims to generate a high-resolution (HR) image from a low-resolution (LR) input image. In this paper, we propose a deep learning-based approach for image super-resolution. We use the wavelet transform to separate the input image into four frequency bands, and train a model for each sub-band. By processing information from different frequency bands via different CNN models, we can extract features more efficiently and learn better LR-to-HR mapping. In addition, we add dense connection to the model to make better use of the internal features in the CNN model. Furthermore, geometric self-ensemble is applied in the testing stage to maximize the potential performance. Extensive experiments on four benchmark datasets show the efficiency of the proposed method.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"106 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Super-Resolution via Wavelet Transform and Advanced Learning Techniques\",\"authors\":\"Yi-Wen Chen, Jian-Jiun Ding\",\"doi\":\"10.1109/ISPACS48206.2019.8986242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image super-resolution aims to generate a high-resolution (HR) image from a low-resolution (LR) input image. In this paper, we propose a deep learning-based approach for image super-resolution. We use the wavelet transform to separate the input image into four frequency bands, and train a model for each sub-band. By processing information from different frequency bands via different CNN models, we can extract features more efficiently and learn better LR-to-HR mapping. In addition, we add dense connection to the model to make better use of the internal features in the CNN model. Furthermore, geometric self-ensemble is applied in the testing stage to maximize the potential performance. Extensive experiments on four benchmark datasets show the efficiency of the proposed method.\",\"PeriodicalId\":6765,\"journal\":{\"name\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"106 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS48206.2019.8986242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像超分辨率旨在从低分辨率输入图像生成高分辨率(HR)图像。在本文中,我们提出了一种基于深度学习的图像超分辨率方法。我们使用小波变换将输入图像分成四个频段,并为每个频段训练一个模型。通过不同的CNN模型处理不同频带的信息,可以更有效地提取特征,更好地学习LR-to-HR映射。此外,我们在模型中加入密集连接,以更好地利用CNN模型的内部特征。此外,在测试阶段采用几何自系综,以最大限度地提高潜在性能。在四个基准数据集上的大量实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super-Resolution via Wavelet Transform and Advanced Learning Techniques
Image super-resolution aims to generate a high-resolution (HR) image from a low-resolution (LR) input image. In this paper, we propose a deep learning-based approach for image super-resolution. We use the wavelet transform to separate the input image into four frequency bands, and train a model for each sub-band. By processing information from different frequency bands via different CNN models, we can extract features more efficiently and learn better LR-to-HR mapping. In addition, we add dense connection to the model to make better use of the internal features in the CNN model. Furthermore, geometric self-ensemble is applied in the testing stage to maximize the potential performance. Extensive experiments on four benchmark datasets show the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信