{"title":"基于人工神经网络和SWAT模型的巴拉塔普扎河流域径流预测","authors":"","doi":"10.52151/jae2022594.1791","DOIUrl":null,"url":null,"abstract":"An attempt was made to model the non-linear system of rainfall-runoff process from Bharathapuzha River basin using an information processing paradigm, Artificial Neural Network (ANN). The results were compared with the outputs of the semi-distributed, physically-based SWAT (Soil and Water Assessment Tool) model. The ANN modelling was done using back propagation learning algorithm, tan sigmoid transfer function, and model input strategy having rainfall and other climatic variables as input by assigning number of layers as 5, 10, 15, 20, 25, 30, and 40. Different models were evaluated with respect to coefficient of correlation (r), coefficient of determination (R2 ), and root mean square error (RMSE). Among the ANN models, ANN-BP-A-5 (six input variables, 5 hidden layers) performed best, followed by ANN-BP-A40 (six input variables, 40 hidden layers). Comparison of ANN predicted runoff of the best models (ANN-BP-A-5 and ANNBP-A40) with the SWAT predicted runoff revealed that the simulated runoff using SWAT was more correlated to observed runoff than ANN predicted runoff. The ANN models underestimated the flow during the rainy season, and gave an overestimation during the summer season. However, the R2 values of 0.666 and 0.649 obtained for ANN-BP-A-5 and ANN-BP-A40, respectively, indicated that the performances of ANN models were satisfactory and ANN model can also be used for runoff prediction in data scarce areas.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"57 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Runoff Prediction of Bharathapuzha River Basin using Artificial Neural Network and SWAT Model\",\"authors\":\"\",\"doi\":\"10.52151/jae2022594.1791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An attempt was made to model the non-linear system of rainfall-runoff process from Bharathapuzha River basin using an information processing paradigm, Artificial Neural Network (ANN). The results were compared with the outputs of the semi-distributed, physically-based SWAT (Soil and Water Assessment Tool) model. The ANN modelling was done using back propagation learning algorithm, tan sigmoid transfer function, and model input strategy having rainfall and other climatic variables as input by assigning number of layers as 5, 10, 15, 20, 25, 30, and 40. Different models were evaluated with respect to coefficient of correlation (r), coefficient of determination (R2 ), and root mean square error (RMSE). Among the ANN models, ANN-BP-A-5 (six input variables, 5 hidden layers) performed best, followed by ANN-BP-A40 (six input variables, 40 hidden layers). Comparison of ANN predicted runoff of the best models (ANN-BP-A-5 and ANNBP-A40) with the SWAT predicted runoff revealed that the simulated runoff using SWAT was more correlated to observed runoff than ANN predicted runoff. The ANN models underestimated the flow during the rainy season, and gave an overestimation during the summer season. However, the R2 values of 0.666 and 0.649 obtained for ANN-BP-A-5 and ANN-BP-A40, respectively, indicated that the performances of ANN models were satisfactory and ANN model can also be used for runoff prediction in data scarce areas.\",\"PeriodicalId\":48507,\"journal\":{\"name\":\"Journal of Agricultural Engineering\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.52151/jae2022594.1791\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.52151/jae2022594.1791","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
利用人工神经网络(ANN)对巴拉塔普扎河流域降雨径流过程的非线性系统进行了建模。将结果与半分布式、基于物理的SWAT(水土评估工具)模型的输出结果进行比较。人工神经网络建模使用反向传播学习算法,tan s型传递函数和模型输入策略,通过将层数分配为5、10、15、20、25、30和40,将降雨量和其他气候变量作为输入。通过相关系数(r)、决定系数(R2)和均方根误差(RMSE)对不同模型进行评价。其中,ANN- bp - a -5(6个输入变量,5个隐藏层)表现最好,其次是ANN- bp - a40(6个输入变量,40个隐藏层)。将最佳模型ANN- bp - a -5和ANNBP-A40与SWAT预测的径流量进行比较,发现SWAT模拟的径流量与观测径流量的相关性高于ANN预测的径流量。人工神经网络模型低估了雨季的流量,高估了夏季的流量。然而,ANN- bp - a -5和ANN- bp - a40的R2分别为0.666和0.649,表明ANN模型的性能令人满意,ANN模型也可以用于数据稀缺地区的径流预测。
Runoff Prediction of Bharathapuzha River Basin using Artificial Neural Network and SWAT Model
An attempt was made to model the non-linear system of rainfall-runoff process from Bharathapuzha River basin using an information processing paradigm, Artificial Neural Network (ANN). The results were compared with the outputs of the semi-distributed, physically-based SWAT (Soil and Water Assessment Tool) model. The ANN modelling was done using back propagation learning algorithm, tan sigmoid transfer function, and model input strategy having rainfall and other climatic variables as input by assigning number of layers as 5, 10, 15, 20, 25, 30, and 40. Different models were evaluated with respect to coefficient of correlation (r), coefficient of determination (R2 ), and root mean square error (RMSE). Among the ANN models, ANN-BP-A-5 (six input variables, 5 hidden layers) performed best, followed by ANN-BP-A40 (six input variables, 40 hidden layers). Comparison of ANN predicted runoff of the best models (ANN-BP-A-5 and ANNBP-A40) with the SWAT predicted runoff revealed that the simulated runoff using SWAT was more correlated to observed runoff than ANN predicted runoff. The ANN models underestimated the flow during the rainy season, and gave an overestimation during the summer season. However, the R2 values of 0.666 and 0.649 obtained for ANN-BP-A-5 and ANN-BP-A40, respectively, indicated that the performances of ANN models were satisfactory and ANN model can also be used for runoff prediction in data scarce areas.
期刊介绍:
The Journal of Agricultural Engineering (JAE) is the official journal of the Italian Society of Agricultural Engineering supported by University of Bologna, Italy. The subject matter covers a complete and interdisciplinary range of research in engineering for agriculture and biosystems.