量子场论中的经典瞬子解

R. Shulyakovsky, A. Gribowsky, A. Garkun, M. Nevmerzhitsky, A. Shaplov, D. A. Shohonov
{"title":"量子场论中的经典瞬子解","authors":"R. Shulyakovsky, A. Gribowsky, A. Garkun, M. Nevmerzhitsky, A. Shaplov, D. A. Shohonov","doi":"10.33581/2520-2243-2020-2-78-85","DOIUrl":null,"url":null,"abstract":"Instantons are non-trivial solutions of classical Euclidean equations of motion with a finite action. They provide stationary phase points in the path integral for tunnel amplitude between two topologically distinct vacua. It make them useful in many applications of quantum theory, especially for describing the wave function of systems with a degenerate vacua in the framework of the path integrals formalism. Our goal is to introduce the current situation about research on instantons and prepare for experiments. In this paper we give a review of instanton effects in quantum theory. We find in stanton solutions in some quantum mechanical problems, namely, in the problems of the one-dimensional motion of a particle in two-well and periodic potentials. We describe known instantons in quantum field theory that arise, in particular, in the two-dimensional Abelian Higgs model and in SU(2) Yang – Mills gauge fields. We find instanton solutions of two-dimensional scalar field models with sine-Gordon and double-well potentials in a limited spatial volume. We show that accounting of instantons significantly changes the form of the Yukawa potential for the sine-Gordon model in two dimensions.","PeriodicalId":17264,"journal":{"name":"Journal of the Belarusian State University. Physics","volume":"149 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical instanton solutions in quantum field theory\",\"authors\":\"R. Shulyakovsky, A. Gribowsky, A. Garkun, M. Nevmerzhitsky, A. Shaplov, D. A. Shohonov\",\"doi\":\"10.33581/2520-2243-2020-2-78-85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instantons are non-trivial solutions of classical Euclidean equations of motion with a finite action. They provide stationary phase points in the path integral for tunnel amplitude between two topologically distinct vacua. It make them useful in many applications of quantum theory, especially for describing the wave function of systems with a degenerate vacua in the framework of the path integrals formalism. Our goal is to introduce the current situation about research on instantons and prepare for experiments. In this paper we give a review of instanton effects in quantum theory. We find in stanton solutions in some quantum mechanical problems, namely, in the problems of the one-dimensional motion of a particle in two-well and periodic potentials. We describe known instantons in quantum field theory that arise, in particular, in the two-dimensional Abelian Higgs model and in SU(2) Yang – Mills gauge fields. We find instanton solutions of two-dimensional scalar field models with sine-Gordon and double-well potentials in a limited spatial volume. We show that accounting of instantons significantly changes the form of the Yukawa potential for the sine-Gordon model in two dimensions.\",\"PeriodicalId\":17264,\"journal\":{\"name\":\"Journal of the Belarusian State University. Physics\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Belarusian State University. Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/2520-2243-2020-2-78-85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Belarusian State University. Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-2243-2020-2-78-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

瞬子是具有有限作用的经典欧几里得运动方程的非平凡解。它们在两个拓扑不同的真空之间的隧道振幅的路径积分中提供了固定相位点。这使得它们在量子理论的许多应用中非常有用,特别是在路径积分形式主义的框架中描述具有简并真空的系统的波函数。我们的目的是介绍有关瞬子的研究现状,并为实验做准备。本文综述了量子理论中的瞬子效应。我们在一些量子力学问题中,即粒子在两阱和周期势中的一维运动问题中,找到了斯坦顿解。我们描述了量子场论中出现的已知瞬子,特别是在二维阿贝尔希格斯模型和SU(2) Yang - Mills规范场中。我们在有限的空间体积中找到了具有正弦戈登势和双阱势的二维标量场模型的瞬解。我们表明,计算瞬时子显著地改变了二维正弦戈登模型的汤川势的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical instanton solutions in quantum field theory
Instantons are non-trivial solutions of classical Euclidean equations of motion with a finite action. They provide stationary phase points in the path integral for tunnel amplitude between two topologically distinct vacua. It make them useful in many applications of quantum theory, especially for describing the wave function of systems with a degenerate vacua in the framework of the path integrals formalism. Our goal is to introduce the current situation about research on instantons and prepare for experiments. In this paper we give a review of instanton effects in quantum theory. We find in stanton solutions in some quantum mechanical problems, namely, in the problems of the one-dimensional motion of a particle in two-well and periodic potentials. We describe known instantons in quantum field theory that arise, in particular, in the two-dimensional Abelian Higgs model and in SU(2) Yang – Mills gauge fields. We find instanton solutions of two-dimensional scalar field models with sine-Gordon and double-well potentials in a limited spatial volume. We show that accounting of instantons significantly changes the form of the Yukawa potential for the sine-Gordon model in two dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信