D. Ursu, A. Dabici, Melinda Vajda, Neli-Camelia Bublea, N. Duțeanu, M. Miclau
{"title":"Cu2O形态对p型染料敏化太阳能电池光电性能的影响","authors":"D. Ursu, A. Dabici, Melinda Vajda, Neli-Camelia Bublea, N. Duțeanu, M. Miclau","doi":"10.2478/awutp-2018-0007","DOIUrl":null,"url":null,"abstract":"Abstract Cuprous oxide with different morphologies (3D hierarchical structure consisting of the micrometer dendritic rods and the porous truncated octahedrons) has been successfully synthesized via a facile one-step hydrothermal method using copper (II) acetate and ethyl cellulose as reactants. The p-type dye-sensitized solar cell based on the micrometer porous structure exhibits approximately 15% increase in JSC and VOC than 3D hierarchical structure. This enhancement could be explained by the high dye loading capacity of this porous structure and lowering the recombination process at the oxide/dye/electrolyte interface.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":"45 1","pages":"67 - 74"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Cu2O Morphology on Photovoltaic Performance of P-Type Dye-Sensitized Solar Cells\",\"authors\":\"D. Ursu, A. Dabici, Melinda Vajda, Neli-Camelia Bublea, N. Duțeanu, M. Miclau\",\"doi\":\"10.2478/awutp-2018-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cuprous oxide with different morphologies (3D hierarchical structure consisting of the micrometer dendritic rods and the porous truncated octahedrons) has been successfully synthesized via a facile one-step hydrothermal method using copper (II) acetate and ethyl cellulose as reactants. The p-type dye-sensitized solar cell based on the micrometer porous structure exhibits approximately 15% increase in JSC and VOC than 3D hierarchical structure. This enhancement could be explained by the high dye loading capacity of this porous structure and lowering the recombination process at the oxide/dye/electrolyte interface.\",\"PeriodicalId\":31012,\"journal\":{\"name\":\"Annals of West University of Timisoara Physics\",\"volume\":\"45 1\",\"pages\":\"67 - 74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of West University of Timisoara Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/awutp-2018-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of West University of Timisoara Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/awutp-2018-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Cu2O Morphology on Photovoltaic Performance of P-Type Dye-Sensitized Solar Cells
Abstract Cuprous oxide with different morphologies (3D hierarchical structure consisting of the micrometer dendritic rods and the porous truncated octahedrons) has been successfully synthesized via a facile one-step hydrothermal method using copper (II) acetate and ethyl cellulose as reactants. The p-type dye-sensitized solar cell based on the micrometer porous structure exhibits approximately 15% increase in JSC and VOC than 3D hierarchical structure. This enhancement could be explained by the high dye loading capacity of this porous structure and lowering the recombination process at the oxide/dye/electrolyte interface.