{"title":"关于BBM方程的可控性","authors":"Melek Jellouli","doi":"10.3934/mcrf.2022002","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this article, we consider the nonlinear BBM equation on the torus. We use controls taking values in a finite dimensional space to show that the equation is approximately controllable in <inline-formula><tex-math id=\"M1\">\\begin{document}$ H^1(\\mathbb{T}) $\\end{document}</tex-math></inline-formula>. We also show that the equation is not exactly controllable in <inline-formula><tex-math id=\"M2\">\\begin{document}$ H^s(\\mathbb{T}) $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M3\">\\begin{document}$ s\\in[1,2[ $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the controllability of the BBM equation\",\"authors\":\"Melek Jellouli\",\"doi\":\"10.3934/mcrf.2022002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this article, we consider the nonlinear BBM equation on the torus. We use controls taking values in a finite dimensional space to show that the equation is approximately controllable in <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ H^1(\\\\mathbb{T}) $\\\\end{document}</tex-math></inline-formula>. We also show that the equation is not exactly controllable in <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ H^s(\\\\mathbb{T}) $\\\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ s\\\\in[1,2[ $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
In this article, we consider the nonlinear BBM equation on the torus. We use controls taking values in a finite dimensional space to show that the equation is approximately controllable in \begin{document}$ H^1(\mathbb{T}) $\end{document}. We also show that the equation is not exactly controllable in \begin{document}$ H^s(\mathbb{T}) $\end{document} for \begin{document}$ s\in[1,2[ $\end{document}.
In this article, we consider the nonlinear BBM equation on the torus. We use controls taking values in a finite dimensional space to show that the equation is approximately controllable in \begin{document}$ H^1(\mathbb{T}) $\end{document}. We also show that the equation is not exactly controllable in \begin{document}$ H^s(\mathbb{T}) $\end{document} for \begin{document}$ s\in[1,2[ $\end{document}.
期刊介绍:
MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.