归一化等压线性泛函的Mercer型不等式及其应用

Pub Date : 2023-01-01 DOI:10.5486/pmd.2023.9365
L. Horváth
{"title":"归一化等压线性泛函的Mercer型不等式及其应用","authors":"L. Horváth","doi":"10.5486/pmd.2023.9365","DOIUrl":null,"url":null,"abstract":". In this paper we give new Mercer type inequalities for normalised isotonic linear functionals which contain Niezgoda’s inequality as a very special case. We deal with some particular forms of the obtained inequalities and study some refinements of them. The results are applied to means generated by normalised isotonic linear functionals. As another application we extend Mercer’s inequality to an operator inequality for convex (not operator convex) functions. An unusual feature of this result is to use closed normal subalgebras instead of a single operator","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mercer type inequalities for normalised isotonic linear functionals with applications\",\"authors\":\"L. Horváth\",\"doi\":\"10.5486/pmd.2023.9365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we give new Mercer type inequalities for normalised isotonic linear functionals which contain Niezgoda’s inequality as a very special case. We deal with some particular forms of the obtained inequalities and study some refinements of them. The results are applied to means generated by normalised isotonic linear functionals. As another application we extend Mercer’s inequality to an operator inequality for convex (not operator convex) functions. An unusual feature of this result is to use closed normal subalgebras instead of a single operator\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5486/pmd.2023.9365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5486/pmd.2023.9365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。本文给出了包含涅兹哥达不等式的归一化等压线性泛函的新的Mercer型不等式。我们处理了所得到的不等式的一些特殊形式,并研究了它们的一些改进。结果应用于由归一化等压线性泛函生成的均值。作为另一个应用,我们将Mercer不等式推广到凸(非凸)函数的算子不等式。这个结果的一个不寻常的特点是使用闭正规子代数而不是单个算子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Mercer type inequalities for normalised isotonic linear functionals with applications
. In this paper we give new Mercer type inequalities for normalised isotonic linear functionals which contain Niezgoda’s inequality as a very special case. We deal with some particular forms of the obtained inequalities and study some refinements of them. The results are applied to means generated by normalised isotonic linear functionals. As another application we extend Mercer’s inequality to an operator inequality for convex (not operator convex) functions. An unusual feature of this result is to use closed normal subalgebras instead of a single operator
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信