浸入式有限元法的最优收敛分析

Shuyan Wang, Huanzhen Chen
{"title":"浸入式有限元法的最优收敛分析","authors":"Shuyan Wang, Huanzhen Chen","doi":"10.1109/ICIST.2011.5765248","DOIUrl":null,"url":null,"abstract":"We present a new proof for optimal-convergence of an immersed interface finite element method based on linear polynomials on non-interface triangular elements and modified linear polynomials on interface triangular elements. Optimal-order error estimates are derived in the broken H1-norm and L2-norm by using the well-known bilinear lemma. The proof seems to be more concise and direct.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"1 1","pages":"255-258"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The optimal convergence analysis for an immersed finite element method\",\"authors\":\"Shuyan Wang, Huanzhen Chen\",\"doi\":\"10.1109/ICIST.2011.5765248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new proof for optimal-convergence of an immersed interface finite element method based on linear polynomials on non-interface triangular elements and modified linear polynomials on interface triangular elements. Optimal-order error estimates are derived in the broken H1-norm and L2-norm by using the well-known bilinear lemma. The proof seems to be more concise and direct.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"1 1\",\"pages\":\"255-258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于非界面三角形单元的线性多项式和界面三角形单元的修正线性多项式,给出了浸入式界面有限元法最优收敛性的新证明。利用众所周知的双线性引理,在h1 -范数和l2 -范数破碎的情况下导出了最优阶误差估计。这个证明似乎更简洁和直接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The optimal convergence analysis for an immersed finite element method
We present a new proof for optimal-convergence of an immersed interface finite element method based on linear polynomials on non-interface triangular elements and modified linear polynomials on interface triangular elements. Optimal-order error estimates are derived in the broken H1-norm and L2-norm by using the well-known bilinear lemma. The proof seems to be more concise and direct.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信