teichm曲线的模符号

IF 1.2 1区 数学 Q1 MATHEMATICS
C. McMullen
{"title":"teichm<e:1>曲线的模符号","authors":"C. McMullen","doi":"10.1515/crelle-2021-0019","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a space of nonabelian modular symbols 𝒮⁢(V){{\\mathcal{S}}(V)} attached to any hyperbolic Riemann surface V, and applies it to obtain new results on polygonal billiards and holomorphic 1-forms. In particular, it shows the scarring behavior of periodic trajectories for billiards in a regular polygon is governed by a countable set of measures homeomorphic to ωω+1{\\omega^{\\omega}+1}.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"51 1","pages":"89 - 125"},"PeriodicalIF":1.2000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modular symbols for Teichmüller curves\",\"authors\":\"C. McMullen\",\"doi\":\"10.1515/crelle-2021-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper introduces a space of nonabelian modular symbols 𝒮⁢(V){{\\\\mathcal{S}}(V)} attached to any hyperbolic Riemann surface V, and applies it to obtain new results on polygonal billiards and holomorphic 1-forms. In particular, it shows the scarring behavior of periodic trajectories for billiards in a regular polygon is governed by a countable set of measures homeomorphic to ωω+1{\\\\omega^{\\\\omega}+1}.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"51 1\",\"pages\":\"89 - 125\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2021-0019\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2021-0019","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

摘要本文引入了一个附加于任意双曲黎曼曲面V上的非abel模符号𝒮(V){{\mathcal{S}}(V)}空间,并应用它得到了关于多边形台球和全纯1型的新结果。特别地,它证明了正多边形中台球周期轨迹的刻痕行为是由一组同胚于ωω+1{\ ω ^{\ ω}+1}的可数测度控制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular symbols for Teichmüller curves
Abstract This paper introduces a space of nonabelian modular symbols 𝒮⁢(V){{\mathcal{S}}(V)} attached to any hyperbolic Riemann surface V, and applies it to obtain new results on polygonal billiards and holomorphic 1-forms. In particular, it shows the scarring behavior of periodic trajectories for billiards in a regular polygon is governed by a countable set of measures homeomorphic to ωω+1{\omega^{\omega}+1}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信