LCK空间的Vaisman定理

Ovidiu Preda, Miron Stanciu
{"title":"LCK空间的Vaisman定理","authors":"Ovidiu Preda, Miron Stanciu","doi":"10.2422/2036-2145.202201_006","DOIUrl":null,"url":null,"abstract":". Vaisman’s theorem for locally conformally K¨ahler (lcK) compact manifolds states that any lcK metric on a compact complex manifold which admits a K¨ahler metric is, in fact, globally conformally K¨ahler (gcK). In this paper, we extend this theorem to compact complex spaces with singularities. PN-III-P1-1.1-TE-2019-0262, within PNCDI III. Miron Stanciu was partially supported by a grant of Ministry of Research and Inno-vation, CNCS - UEFISCDI, project no. PN-III-P4-ID-PCE-2020-0025, within PNCDI III.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"228 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vaisman theorem for LCK spaces\",\"authors\":\"Ovidiu Preda, Miron Stanciu\",\"doi\":\"10.2422/2036-2145.202201_006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Vaisman’s theorem for locally conformally K¨ahler (lcK) compact manifolds states that any lcK metric on a compact complex manifold which admits a K¨ahler metric is, in fact, globally conformally K¨ahler (gcK). In this paper, we extend this theorem to compact complex spaces with singularities. PN-III-P1-1.1-TE-2019-0262, within PNCDI III. Miron Stanciu was partially supported by a grant of Ministry of Research and Inno-vation, CNCS - UEFISCDI, project no. PN-III-P4-ID-PCE-2020-0025, within PNCDI III.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"228 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202201_006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202201_006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 局部共形K¨ahler (lcK)紧致流形的Vaisman定理指出,在一个承认K¨ahler度规的紧致复流形上的任何lcK度规实际上都是全局共形K¨ahler (gcK)。本文将该定理推广到具有奇异点的紧复空间。PN-III-P1-1.1-TE-2019-0262,属于PNCDI III。Miron Stanciu得到了CNCS - UEFISCDI研究与创新部的部分资助,项目编号:PN-III-P4-ID-PCE-2020-0025,属于PNCDI III。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vaisman theorem for LCK spaces
. Vaisman’s theorem for locally conformally K¨ahler (lcK) compact manifolds states that any lcK metric on a compact complex manifold which admits a K¨ahler metric is, in fact, globally conformally K¨ahler (gcK). In this paper, we extend this theorem to compact complex spaces with singularities. PN-III-P1-1.1-TE-2019-0262, within PNCDI III. Miron Stanciu was partially supported by a grant of Ministry of Research and Inno-vation, CNCS - UEFISCDI, project no. PN-III-P4-ID-PCE-2020-0025, within PNCDI III.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信