差动反应器的时空混沌

J. Merkin, R. Satnoianu, S. Scott
{"title":"差动反应器的时空混沌","authors":"J. Merkin, R. Satnoianu, S. Scott","doi":"10.1039/A709156G","DOIUrl":null,"url":null,"abstract":"The spatiotemporal evolution of a chemical system close to a Hopf bifurcation in a differential flow reactor is studied. The interaction of the Hopf-differential flow induced instabilities for the cubic autocatalator model is determined through the appropriate form of the complex Ginzburg–Landau equation for the evolving amplitude. New behaviour, including spatiotemporal chaos, is observed from this equation. These predictions are shown also to be a feature of the initial-value problem for the original autocatalator equations.","PeriodicalId":17286,"journal":{"name":"Journal of the Chemical Society, Faraday Transactions","volume":"19 1","pages":"1211-1216"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Spatiotemporal chaos in a differential flow reactor\",\"authors\":\"J. Merkin, R. Satnoianu, S. Scott\",\"doi\":\"10.1039/A709156G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spatiotemporal evolution of a chemical system close to a Hopf bifurcation in a differential flow reactor is studied. The interaction of the Hopf-differential flow induced instabilities for the cubic autocatalator model is determined through the appropriate form of the complex Ginzburg–Landau equation for the evolving amplitude. New behaviour, including spatiotemporal chaos, is observed from this equation. These predictions are shown also to be a feature of the initial-value problem for the original autocatalator equations.\",\"PeriodicalId\":17286,\"journal\":{\"name\":\"Journal of the Chemical Society, Faraday Transactions\",\"volume\":\"19 1\",\"pages\":\"1211-1216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Chemical Society, Faraday Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/A709156G\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Chemical Society, Faraday Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/A709156G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了差流反应器中接近Hopf分岔的化学系统的时空演化。通过适当形式的复杂金兹堡-朗道方程来确定三次自催化器模型的hopf微分流致不稳定性的相互作用。新的行为,包括时空混沌,可以从这个方程中观察到。这些预测也被证明是原始自催化方程的初值问题的一个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal chaos in a differential flow reactor
The spatiotemporal evolution of a chemical system close to a Hopf bifurcation in a differential flow reactor is studied. The interaction of the Hopf-differential flow induced instabilities for the cubic autocatalator model is determined through the appropriate form of the complex Ginzburg–Landau equation for the evolving amplitude. New behaviour, including spatiotemporal chaos, is observed from this equation. These predictions are shown also to be a feature of the initial-value problem for the original autocatalator equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信