{"title":"响应面法优化沸石-铁漂白棕榈油的工艺","authors":"Ulfah Anis, R. Millati, C. Hidayat","doi":"10.22146/agritech.48114","DOIUrl":null,"url":null,"abstract":"A carcinogenic 3-monochloropropane 1, 2 diol ester (3-MCPD ester) can be formed during processing crude palm oil (CPO). Chlorine is one of the precursors for the formation of 3-MCPD esters. This study aimed to optimize the bleaching conditions using zeolite-Fe for reducing chlorine concentration by the Response Surface Methodology (RSM) and further evaluate the characteristics of the bleached CPO. Factors such as bleaching time, zeolite-Fe concentration, and bleaching temperature were evaluated and further optimized. The results showed that Fe in the modified zeolite-Fe increased about 71.89% compared to natural zeolite. Zeolite-Fe concentration, bleaching time, and bleaching temperature had a significant effect on chlorine adsorption. The optimum bleaching process was obtained at a zeolite-Fe concentration of 5% (w/w) and bleaching temperature of 80 °C for 30 minutes. Bleached CPO had a chlorine concentration of 25 ± 1 ppb, carotenoid of 467.70 ± 13.71 ppm, and a DOBI (Deterioration Of Bleachability Index) value of 2.17 ± 0.01 R.","PeriodicalId":7563,"journal":{"name":"agriTECH","volume":"137 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Crude Palm (Elaeis guineensis) Oil Bleaching using Zeolite-Fe by Response Surface Methodology\",\"authors\":\"Ulfah Anis, R. Millati, C. Hidayat\",\"doi\":\"10.22146/agritech.48114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A carcinogenic 3-monochloropropane 1, 2 diol ester (3-MCPD ester) can be formed during processing crude palm oil (CPO). Chlorine is one of the precursors for the formation of 3-MCPD esters. This study aimed to optimize the bleaching conditions using zeolite-Fe for reducing chlorine concentration by the Response Surface Methodology (RSM) and further evaluate the characteristics of the bleached CPO. Factors such as bleaching time, zeolite-Fe concentration, and bleaching temperature were evaluated and further optimized. The results showed that Fe in the modified zeolite-Fe increased about 71.89% compared to natural zeolite. Zeolite-Fe concentration, bleaching time, and bleaching temperature had a significant effect on chlorine adsorption. The optimum bleaching process was obtained at a zeolite-Fe concentration of 5% (w/w) and bleaching temperature of 80 °C for 30 minutes. Bleached CPO had a chlorine concentration of 25 ± 1 ppb, carotenoid of 467.70 ± 13.71 ppm, and a DOBI (Deterioration Of Bleachability Index) value of 2.17 ± 0.01 R.\",\"PeriodicalId\":7563,\"journal\":{\"name\":\"agriTECH\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"agriTECH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/agritech.48114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"agriTECH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/agritech.48114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
Optimization of Crude Palm (Elaeis guineensis) Oil Bleaching using Zeolite-Fe by Response Surface Methodology
A carcinogenic 3-monochloropropane 1, 2 diol ester (3-MCPD ester) can be formed during processing crude palm oil (CPO). Chlorine is one of the precursors for the formation of 3-MCPD esters. This study aimed to optimize the bleaching conditions using zeolite-Fe for reducing chlorine concentration by the Response Surface Methodology (RSM) and further evaluate the characteristics of the bleached CPO. Factors such as bleaching time, zeolite-Fe concentration, and bleaching temperature were evaluated and further optimized. The results showed that Fe in the modified zeolite-Fe increased about 71.89% compared to natural zeolite. Zeolite-Fe concentration, bleaching time, and bleaching temperature had a significant effect on chlorine adsorption. The optimum bleaching process was obtained at a zeolite-Fe concentration of 5% (w/w) and bleaching temperature of 80 °C for 30 minutes. Bleached CPO had a chlorine concentration of 25 ± 1 ppb, carotenoid of 467.70 ± 13.71 ppm, and a DOBI (Deterioration Of Bleachability Index) value of 2.17 ± 0.01 R.