CeO2/Al2O3催化丙二醇-甲醇气相氧化制乳酸甲酯

M. Sharanda, A. Mylin, O. Zinchenko, V. Brei
{"title":"CeO2/Al2O3催化丙二醇-甲醇气相氧化制乳酸甲酯","authors":"M. Sharanda, A. Mylin, O. Zinchenko, V. Brei","doi":"10.15407/kataliz2021.31.092","DOIUrl":null,"url":null,"abstract":"The vapor-phase oxidation of mixtures of propylene glycol with methanol and ethanol to methyl and ethyl lactate, respectively, on supported CeO2/Al2O3 catalyst with 10 wt.% CeO2 content was studied. The steel flow reactor with a fixed catalyst bed (4 cm3) was used. 20 wt.% solution of propylene glycol in alcohol was fed to the reactor inlet by Waters 950 pump at LHSV= 0.5-0.8 h-1. Reaction temperature and pressure were varied in the interval of 190-250 0C and 1.3-1.8 bars respectively. Compressed air was given to the reactor inlet at the molar ratio of propylene glycol/O2 = 1. The reaction products were analyzed using gas chromatography (Agilent 7820A) and 3C NMR (Bruker Avance 400) methods. Studied oxidation of propylene glycol in the presence of methanol describes by total reaction CH3CHOHCH2OH +O2 + СН3OH = CH3CHOHCOOСН3 +2H2O At first, hydroxyacetone is formed that is further oxidized to pyruvic aldehyde, which attaches alcohol to form hemiacetal. Then, hemiacetal of methyl glyoxal rearranges into methyl lactate by Cannizzaro. At 220 0C and load on a catalyst of < 2 mmol PG/gcat/h, the selectivity towards methyl lactate reaches 70 wt.% at 100 % propylene glycol conversion. The main by-products are formed as the result of acetaldehyde transformation. Acetaldehyde could be formed at hydroxyacetone aldol decondensation. In the presence of ethanol, the formation of a significant amount of acetaldehyde and its aldol condensation products as well as the formation of diethoxyethane are observed. Therefore, ethyl lactate selectivity at 100 % propylene glycol conversion does not exceed 45 %. Supported CeO2/SiO2 contact was tested in this oxidation reaction also. However, CeO2/SiO2 provides the low, up to 25%, selectivity towards methyl lactate at full propylene glycol conversion. It was shown that at the same conditions methyl lactate is formed with higher selectivity then ethyl lactate. The high methyl lactate yield up to 70 wt.% could be obtained via vapor-phase oxidation of 20% mixture of propylene glycol with methanol by air oxygen on supported CeO2/Al2O3 catalyst at 210 - 220°С and at time contact of 3-4 seconds.","PeriodicalId":9649,"journal":{"name":"Catalysis and Petrochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vapor-phase oxidation of propylene glycol-methanol mixture to methyl lactate on CeO2/Al2O3 catalyst\",\"authors\":\"M. Sharanda, A. Mylin, O. Zinchenko, V. Brei\",\"doi\":\"10.15407/kataliz2021.31.092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vapor-phase oxidation of mixtures of propylene glycol with methanol and ethanol to methyl and ethyl lactate, respectively, on supported CeO2/Al2O3 catalyst with 10 wt.% CeO2 content was studied. The steel flow reactor with a fixed catalyst bed (4 cm3) was used. 20 wt.% solution of propylene glycol in alcohol was fed to the reactor inlet by Waters 950 pump at LHSV= 0.5-0.8 h-1. Reaction temperature and pressure were varied in the interval of 190-250 0C and 1.3-1.8 bars respectively. Compressed air was given to the reactor inlet at the molar ratio of propylene glycol/O2 = 1. The reaction products were analyzed using gas chromatography (Agilent 7820A) and 3C NMR (Bruker Avance 400) methods. Studied oxidation of propylene glycol in the presence of methanol describes by total reaction CH3CHOHCH2OH +O2 + СН3OH = CH3CHOHCOOСН3 +2H2O At first, hydroxyacetone is formed that is further oxidized to pyruvic aldehyde, which attaches alcohol to form hemiacetal. Then, hemiacetal of methyl glyoxal rearranges into methyl lactate by Cannizzaro. At 220 0C and load on a catalyst of < 2 mmol PG/gcat/h, the selectivity towards methyl lactate reaches 70 wt.% at 100 % propylene glycol conversion. The main by-products are formed as the result of acetaldehyde transformation. Acetaldehyde could be formed at hydroxyacetone aldol decondensation. In the presence of ethanol, the formation of a significant amount of acetaldehyde and its aldol condensation products as well as the formation of diethoxyethane are observed. Therefore, ethyl lactate selectivity at 100 % propylene glycol conversion does not exceed 45 %. Supported CeO2/SiO2 contact was tested in this oxidation reaction also. However, CeO2/SiO2 provides the low, up to 25%, selectivity towards methyl lactate at full propylene glycol conversion. It was shown that at the same conditions methyl lactate is formed with higher selectivity then ethyl lactate. The high methyl lactate yield up to 70 wt.% could be obtained via vapor-phase oxidation of 20% mixture of propylene glycol with methanol by air oxygen on supported CeO2/Al2O3 catalyst at 210 - 220°С and at time contact of 3-4 seconds.\",\"PeriodicalId\":9649,\"journal\":{\"name\":\"Catalysis and Petrochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis and Petrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/kataliz2021.31.092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis and Petrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/kataliz2021.31.092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了在CeO2含量为10 wt.%的负载CeO2/Al2O3催化剂上,丙二醇与甲醇和乙醇的混合物气相氧化制乳酸甲酯和乳酸乙酯的反应。采用固定催化剂床(4 cm3)的钢流反应器。在LHSV= 0.5-0.8 h-1时,用Waters 950泵将20wt .%的丙二醇溶液送入反应器入口。反应温度和压力分别在190 ~ 250℃和1.3 ~ 1.8 bar之间变化。压缩空气按丙二醇/O2的摩尔比= 1输入反应器入口。反应产物采用气相色谱(Agilent 7820A)和3C核磁共振(Bruker Avance 400)分析。研究了丙二醇在甲醇存在下的氧化反应,描述为总反应CH3CHOHCH2OH +O2 + СН3OH = CH3CHOHCOOСН3 +2H2O,首先生成羟基丙酮,再氧化为丙酮醛,丙酮醛与醇结合形成半缩醛。然后,甲乙二醛的半缩醛被坎尼扎罗重排成乳酸甲酯。在220℃下,负载在< 2 mmol PG/gcat/h的催化剂上,在100%丙二醇转化率下,对乳酸甲酯的选择性达到70 wt.%。主要副产物是乙醛转化的结果。羟丙酮醛脱密反应可生成乙醛。在乙醇存在下,观察到大量乙醛及其醛醇缩合产物的形成以及乙烷的形成。因此,在100%丙二醇转化率下,乳酸乙酯的选择性不超过45%。在此氧化反应中还测试了负载CeO2/SiO2接触。然而,CeO2/SiO2在丙二醇全转化时对乳酸甲酯的选择性较低,高达25%。结果表明,在相同条件下,乳酸甲酯的选择性高于乳酸乙酯。在负载型CeO2/Al2O3催化剂上,在210 ~ 220°С温度下,接触时间为3 ~ 4秒,用空气氧将20%丙二醇和甲醇的混合物气相氧化,乳酸甲酯收率可达70 wt.%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vapor-phase oxidation of propylene glycol-methanol mixture to methyl lactate on CeO2/Al2O3 catalyst
The vapor-phase oxidation of mixtures of propylene glycol with methanol and ethanol to methyl and ethyl lactate, respectively, on supported CeO2/Al2O3 catalyst with 10 wt.% CeO2 content was studied. The steel flow reactor with a fixed catalyst bed (4 cm3) was used. 20 wt.% solution of propylene glycol in alcohol was fed to the reactor inlet by Waters 950 pump at LHSV= 0.5-0.8 h-1. Reaction temperature and pressure were varied in the interval of 190-250 0C and 1.3-1.8 bars respectively. Compressed air was given to the reactor inlet at the molar ratio of propylene glycol/O2 = 1. The reaction products were analyzed using gas chromatography (Agilent 7820A) and 3C NMR (Bruker Avance 400) methods. Studied oxidation of propylene glycol in the presence of methanol describes by total reaction CH3CHOHCH2OH +O2 + СН3OH = CH3CHOHCOOСН3 +2H2O At first, hydroxyacetone is formed that is further oxidized to pyruvic aldehyde, which attaches alcohol to form hemiacetal. Then, hemiacetal of methyl glyoxal rearranges into methyl lactate by Cannizzaro. At 220 0C and load on a catalyst of < 2 mmol PG/gcat/h, the selectivity towards methyl lactate reaches 70 wt.% at 100 % propylene glycol conversion. The main by-products are formed as the result of acetaldehyde transformation. Acetaldehyde could be formed at hydroxyacetone aldol decondensation. In the presence of ethanol, the formation of a significant amount of acetaldehyde and its aldol condensation products as well as the formation of diethoxyethane are observed. Therefore, ethyl lactate selectivity at 100 % propylene glycol conversion does not exceed 45 %. Supported CeO2/SiO2 contact was tested in this oxidation reaction also. However, CeO2/SiO2 provides the low, up to 25%, selectivity towards methyl lactate at full propylene glycol conversion. It was shown that at the same conditions methyl lactate is formed with higher selectivity then ethyl lactate. The high methyl lactate yield up to 70 wt.% could be obtained via vapor-phase oxidation of 20% mixture of propylene glycol with methanol by air oxygen on supported CeO2/Al2O3 catalyst at 210 - 220°С and at time contact of 3-4 seconds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信