在环状节之间的一属

P. Feller, Junghwan Park
{"title":"在环状节之间的一属","authors":"P. Feller, Junghwan Park","doi":"10.1093/IMRN/RNAA027","DOIUrl":null,"url":null,"abstract":"We determine the pairs of torus knots that have a genus one cobordism between them, with one notable exception. This is done by combining obstructions using $\\nu^+$ from the Heegaard Floer knot complex and explicit constructions of cobordisms. As an application, we determine the pairs of torus knots related by a single crossing change. Also, we determine the pairs of Thurston-Bennequin number maximizing Legendrian torus knots that have a genus one exact Lagrangian cobordism, with one exception.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Genus One Cobordisms Between Torus Knots\",\"authors\":\"P. Feller, Junghwan Park\",\"doi\":\"10.1093/IMRN/RNAA027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the pairs of torus knots that have a genus one cobordism between them, with one notable exception. This is done by combining obstructions using $\\\\nu^+$ from the Heegaard Floer knot complex and explicit constructions of cobordisms. As an application, we determine the pairs of torus knots related by a single crossing change. Also, we determine the pairs of Thurston-Bennequin number maximizing Legendrian torus knots that have a genus one exact Lagrangian cobordism, with one exception.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAA027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们确定在它们之间有一个属一配体的环面结对,有一个值得注意的例外。这是通过使用Heegaard flower结复杂的$\nu^+$组合障碍物和显式协数结构来完成的。作为一个应用,我们确定了由单个交叉变化相关的环面结对。此外,我们还确定了Thurston-Bennequin数最大化的Legendrian环面结对,这些环面结具有一个精确拉格朗日配边,但有一个例外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genus One Cobordisms Between Torus Knots
We determine the pairs of torus knots that have a genus one cobordism between them, with one notable exception. This is done by combining obstructions using $\nu^+$ from the Heegaard Floer knot complex and explicit constructions of cobordisms. As an application, we determine the pairs of torus knots related by a single crossing change. Also, we determine the pairs of Thurston-Bennequin number maximizing Legendrian torus knots that have a genus one exact Lagrangian cobordism, with one exception.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信