关于n体库仑波函数的混合正则性

IF 1.9 3区 数学 Q2 Mathematics
Long Meng
{"title":"关于n体库仑波函数的混合正则性","authors":"Long Meng","doi":"10.1051/m2an/2023054","DOIUrl":null,"url":null,"abstract":"In this paper, we prove a new mixed regularity of Coulombic wavefunction taking into account the Pauli exclusion principle. We also study the hyperbolic cross space approximation of eigenfunctions associated with this new regularity, and deduce the corresponding error estimates in L2-norm and H1-semi-norm. The proofs are based on the study of extended Hardy-type inequalities for Coulomb-type potentials.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the mixed regularity of N-body Coulombic wavefunctions\",\"authors\":\"Long Meng\",\"doi\":\"10.1051/m2an/2023054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove a new mixed regularity of Coulombic wavefunction taking into account the Pauli exclusion principle. We also study the hyperbolic cross space approximation of eigenfunctions associated with this new regularity, and deduce the corresponding error estimates in L2-norm and H1-semi-norm. The proofs are based on the study of extended Hardy-type inequalities for Coulomb-type potentials.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2023054\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023054","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在考虑泡利不相容原理的情况下,证明了库仑波函数的一种新的混合正则性。我们还研究了与这一新正则性相关的特征函数的双曲交叉空间逼近,并推导出相应的l2 -范数和h1 -半范数的误差估计。这些证明是基于对库仑型势的扩展hardy型不等式的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the mixed regularity of N-body Coulombic wavefunctions
In this paper, we prove a new mixed regularity of Coulombic wavefunction taking into account the Pauli exclusion principle. We also study the hyperbolic cross space approximation of eigenfunctions associated with this new regularity, and deduce the corresponding error estimates in L2-norm and H1-semi-norm. The proofs are based on the study of extended Hardy-type inequalities for Coulomb-type potentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信