Vlasov-Riesz系统的适位性和奇点形成

IF 1 4区 数学 Q1 MATHEMATICS
Young-Pil Choi, In-Jee Jeong
{"title":"Vlasov-Riesz系统的适位性和奇点形成","authors":"Young-Pil Choi, In-Jee Jeong","doi":"10.3934/krm.2023030","DOIUrl":null,"url":null,"abstract":"We investigate the Cauchy problem for the Vlasov--Riesz system, which is a Vlasov equation featuring an interaction potential generalizing previously studied cases, including the Coulomb $\\Phi = (-\\Delta)^{-1}\\rho$, Manev $(-\\Delta)^{-1} + (-\\Delta)^{-\\frac12}$, and pure Manev $(-\\Delta)^{-\\frac12}$ potentials. For the first time, we extend the local theory of classical solutions to potentials more singular than that for the Manev. Then, we obtain finite-time singularity formation for solutions with various attractive interaction potentials, extending the well-known blow-up result of Horst for attractive Vlasov--Poisson for $d\\ge4$. Our local well-posedness and singularity formation results extend to cases when linear diffusion and damping in velocity are present.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"29 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Well-posedness and singularity formation for Vlasov–Riesz system\",\"authors\":\"Young-Pil Choi, In-Jee Jeong\",\"doi\":\"10.3934/krm.2023030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the Cauchy problem for the Vlasov--Riesz system, which is a Vlasov equation featuring an interaction potential generalizing previously studied cases, including the Coulomb $\\\\Phi = (-\\\\Delta)^{-1}\\\\rho$, Manev $(-\\\\Delta)^{-1} + (-\\\\Delta)^{-\\\\frac12}$, and pure Manev $(-\\\\Delta)^{-\\\\frac12}$ potentials. For the first time, we extend the local theory of classical solutions to potentials more singular than that for the Manev. Then, we obtain finite-time singularity formation for solutions with various attractive interaction potentials, extending the well-known blow-up result of Horst for attractive Vlasov--Poisson for $d\\\\ge4$. Our local well-posedness and singularity formation results extend to cases when linear diffusion and damping in velocity are present.\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2023030\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2023030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了Vlasov—Riesz系统的Cauchy问题,这是一个Vlasov方程,其特征是相互作用势推广了先前研究的情况,包括库仑$\Phi = (-\Delta)^{-1}\rho$,马涅夫$(-\Delta)^{-1} + (-\Delta)^{-\frac12}$和纯马涅夫$(-\Delta)^{-\frac12}$势。我们首次将经典解的局部理论推广到比马尼夫方程更奇异的势。然后,我们得到了具有各种吸引相互作用势的解的有限时间奇点形成,推广了众所周知的关于$d\ge4$的吸引Vlasov—Poisson的Horst爆破结果。我们的局部适定性和奇点形成结果推广到存在线性扩散和速度阻尼的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness and singularity formation for Vlasov–Riesz system
We investigate the Cauchy problem for the Vlasov--Riesz system, which is a Vlasov equation featuring an interaction potential generalizing previously studied cases, including the Coulomb $\Phi = (-\Delta)^{-1}\rho$, Manev $(-\Delta)^{-1} + (-\Delta)^{-\frac12}$, and pure Manev $(-\Delta)^{-\frac12}$ potentials. For the first time, we extend the local theory of classical solutions to potentials more singular than that for the Manev. Then, we obtain finite-time singularity formation for solutions with various attractive interaction potentials, extending the well-known blow-up result of Horst for attractive Vlasov--Poisson for $d\ge4$. Our local well-posedness and singularity formation results extend to cases when linear diffusion and damping in velocity are present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信