基于数量-质量的水库-河流系统水量分配规划

A. Ebrahimi, M. Shourian
{"title":"基于数量-质量的水库-河流系统水量分配规划","authors":"A. Ebrahimi, M. Shourian","doi":"10.2166/aqua.2022.056","DOIUrl":null,"url":null,"abstract":"\n Simulation–optimization approaches are useful methods for the assessment of water resource engineering plans and finding the best management policy at the watershed scale. In this study, to find the optimum operation for a reservoir with the purpose of satisfying water demands while meeting the water quantity and quality criteria, a generic reservoir and river basin simulation model (MODSIM) is coupled with the particle swarm optimization (PSO) algorithm leading to construct the PSO–MODSIM model. With the decision variables of the reservoir's monthly releases, the objective function is to maximize the supply for downstream demands while keeping the electrical conductivity (EC) in the river flow lower than a predefined level at the downstream checkpoint, which is a function of the EC in the agricultural return flows. Moreover, a safe flow rate is defined in which the streamflow should not exceed at the checkpoint resulting in mitigation of the submerging lands damage. Results obtained by the PSO–MODSIM model indicate the ability of the proposed simulation–optimization approach for solving the problem of optimal quantity–quality-based water allocation in a reservoir–river system. For instance, the EC at the checkpoint is decreased by 61% in the optimum reservoir operation state comparing the present situation, whereas the municipal and environmental demands are fully met and the agricultural demands are supplied with a desirable reliability satisfaction level.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantity–quality-based water allocation programming in a reservoir–river system\",\"authors\":\"A. Ebrahimi, M. Shourian\",\"doi\":\"10.2166/aqua.2022.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Simulation–optimization approaches are useful methods for the assessment of water resource engineering plans and finding the best management policy at the watershed scale. In this study, to find the optimum operation for a reservoir with the purpose of satisfying water demands while meeting the water quantity and quality criteria, a generic reservoir and river basin simulation model (MODSIM) is coupled with the particle swarm optimization (PSO) algorithm leading to construct the PSO–MODSIM model. With the decision variables of the reservoir's monthly releases, the objective function is to maximize the supply for downstream demands while keeping the electrical conductivity (EC) in the river flow lower than a predefined level at the downstream checkpoint, which is a function of the EC in the agricultural return flows. Moreover, a safe flow rate is defined in which the streamflow should not exceed at the checkpoint resulting in mitigation of the submerging lands damage. Results obtained by the PSO–MODSIM model indicate the ability of the proposed simulation–optimization approach for solving the problem of optimal quantity–quality-based water allocation in a reservoir–river system. For instance, the EC at the checkpoint is decreased by 61% in the optimum reservoir operation state comparing the present situation, whereas the municipal and environmental demands are fully met and the agricultural demands are supplied with a desirable reliability satisfaction level.\",\"PeriodicalId\":17666,\"journal\":{\"name\":\"Journal of Water Supply: Research and Technology-Aqua\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply: Research and Technology-Aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2022.056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在流域尺度上,模拟优化方法是评价水资源工程方案和寻找最佳管理策略的有效方法。为了在满足水量和水质标准的同时,寻找水库的最优调度方案,将通用水库流域模拟模型(MODSIM)与粒子群优化算法(PSO)相结合,构建了PSO - MODSIM模型。以水库月放水量为决策变量,目标函数是在保证下游需求供给最大化的同时,使下游关卡的河流电导率(EC)低于预定水平,这是农业回流电导率的函数。此外,还定义了一个安全流量,其中流量不应超过检查点,从而减轻淹没的土地损害。PSO-MODSIM模型的结果表明,所提出的模拟优化方法能够解决水库-河流水系基于数量-质量的最优配水问题。水库最佳运行状态下,检查站EC比现状降低61%,完全满足市政和环境需求,农业需求得到良好的可靠性满意度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantity–quality-based water allocation programming in a reservoir–river system
Simulation–optimization approaches are useful methods for the assessment of water resource engineering plans and finding the best management policy at the watershed scale. In this study, to find the optimum operation for a reservoir with the purpose of satisfying water demands while meeting the water quantity and quality criteria, a generic reservoir and river basin simulation model (MODSIM) is coupled with the particle swarm optimization (PSO) algorithm leading to construct the PSO–MODSIM model. With the decision variables of the reservoir's monthly releases, the objective function is to maximize the supply for downstream demands while keeping the electrical conductivity (EC) in the river flow lower than a predefined level at the downstream checkpoint, which is a function of the EC in the agricultural return flows. Moreover, a safe flow rate is defined in which the streamflow should not exceed at the checkpoint resulting in mitigation of the submerging lands damage. Results obtained by the PSO–MODSIM model indicate the ability of the proposed simulation–optimization approach for solving the problem of optimal quantity–quality-based water allocation in a reservoir–river system. For instance, the EC at the checkpoint is decreased by 61% in the optimum reservoir operation state comparing the present situation, whereas the municipal and environmental demands are fully met and the agricultural demands are supplied with a desirable reliability satisfaction level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信