{"title":"海面高度的变分资料同化成区域风暴潮模式:优点和局限性","authors":"D. Byrne, K. Horsburgh, J. Williams","doi":"10.1080/1755876X.2021.1884405","DOIUrl":null,"url":null,"abstract":"ABSTRACT Storm surges are coastal sea-level variations caused by meteorological conditions. It is vital that they are forecasted accurately to reduce the potential for financial damage and loss of life. In this study, we investigate how effectively the variational assimilation of sparse sea level observations from tide gauges can be used for operational forecasting in the North Sea. Novel data assimilation ideas are considered and evaluated: a new shortest-path method for generating improved distance-based correlations in the presence of coastal boundaries and an adaptive error covariance model. An assimilation setup is validated by removing selections of tide gauges from the assimilation procedure for a North Sea case study. These experiments show widespread improvements in RMSE and correlations, reaching up to 16 cm and 0.7 (respectively) at some locations. Simulated forecast experiments show RMSE improvements of up to 5 cm for the first 24 h of forecasting, which is useful operationally. Beyond 24 h, improvements quickly diminish however. Using the setup based on the shortest path algorithm shows little difference when compared to a simpler Euclidean method at most locations. Analysis of this event shows that improvements due to data assimilation are bounded and relatively short lived.","PeriodicalId":50105,"journal":{"name":"Journal of Operational Oceanography","volume":"21 1","pages":"1 - 14"},"PeriodicalIF":1.7000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Variational data assimilation of sea surface height into a regional storm surge model: Benefits and limitations\",\"authors\":\"D. Byrne, K. Horsburgh, J. Williams\",\"doi\":\"10.1080/1755876X.2021.1884405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Storm surges are coastal sea-level variations caused by meteorological conditions. It is vital that they are forecasted accurately to reduce the potential for financial damage and loss of life. In this study, we investigate how effectively the variational assimilation of sparse sea level observations from tide gauges can be used for operational forecasting in the North Sea. Novel data assimilation ideas are considered and evaluated: a new shortest-path method for generating improved distance-based correlations in the presence of coastal boundaries and an adaptive error covariance model. An assimilation setup is validated by removing selections of tide gauges from the assimilation procedure for a North Sea case study. These experiments show widespread improvements in RMSE and correlations, reaching up to 16 cm and 0.7 (respectively) at some locations. Simulated forecast experiments show RMSE improvements of up to 5 cm for the first 24 h of forecasting, which is useful operationally. Beyond 24 h, improvements quickly diminish however. Using the setup based on the shortest path algorithm shows little difference when compared to a simpler Euclidean method at most locations. Analysis of this event shows that improvements due to data assimilation are bounded and relatively short lived.\",\"PeriodicalId\":50105,\"journal\":{\"name\":\"Journal of Operational Oceanography\",\"volume\":\"21 1\",\"pages\":\"1 - 14\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operational Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/1755876X.2021.1884405\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/1755876X.2021.1884405","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Variational data assimilation of sea surface height into a regional storm surge model: Benefits and limitations
ABSTRACT Storm surges are coastal sea-level variations caused by meteorological conditions. It is vital that they are forecasted accurately to reduce the potential for financial damage and loss of life. In this study, we investigate how effectively the variational assimilation of sparse sea level observations from tide gauges can be used for operational forecasting in the North Sea. Novel data assimilation ideas are considered and evaluated: a new shortest-path method for generating improved distance-based correlations in the presence of coastal boundaries and an adaptive error covariance model. An assimilation setup is validated by removing selections of tide gauges from the assimilation procedure for a North Sea case study. These experiments show widespread improvements in RMSE and correlations, reaching up to 16 cm and 0.7 (respectively) at some locations. Simulated forecast experiments show RMSE improvements of up to 5 cm for the first 24 h of forecasting, which is useful operationally. Beyond 24 h, improvements quickly diminish however. Using the setup based on the shortest path algorithm shows little difference when compared to a simpler Euclidean method at most locations. Analysis of this event shows that improvements due to data assimilation are bounded and relatively short lived.
期刊介绍:
The Journal of Operational Oceanography will publish papers which examine the role of oceanography in contributing to the fields of: Numerical Weather Prediction; Development of Climatologies; Implications of Ocean Change; Ocean and Climate Forecasting; Ocean Observing Technologies; Eutrophication; Climate Assessment; Shoreline Change; Marine and Sea State Prediction; Model Development and Validation; Coastal Flooding; Reducing Public Health Risks; Short-Range Ocean Forecasting; Forces on Structures; Ocean Policy; Protecting and Restoring Ecosystem health; Controlling and Mitigating Natural Hazards; Safe and Efficient Marine Operations