八字结手术中紧密接触结构的分类

IF 2 1区 数学
J. Conway, Hyunki Min
{"title":"八字结手术中紧密接触结构的分类","authors":"J. Conway, Hyunki Min","doi":"10.2140/GT.2020.24.1457","DOIUrl":null,"url":null,"abstract":"Two of the basic questions in contact topology are which manifolds admit tight contact structures, and on those that do, can we classify such structures. We present the first such classification on an infinite family of (mostly) hyperbolic 3-manifolds: surgeries on the figure-eight knot. We also determine which of the tight contact structures are symplectically fillable and which are universally tight.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"36 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Classification of tight contact structures on surgeries on the figure-eight knot\",\"authors\":\"J. Conway, Hyunki Min\",\"doi\":\"10.2140/GT.2020.24.1457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two of the basic questions in contact topology are which manifolds admit tight contact structures, and on those that do, can we classify such structures. We present the first such classification on an infinite family of (mostly) hyperbolic 3-manifolds: surgeries on the figure-eight knot. We also determine which of the tight contact structures are symplectically fillable and which are universally tight.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GT.2020.24.1457\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2020.24.1457","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

接触拓扑学中的两个基本问题是:哪些流形承认紧密接触结构,以及在那些承认紧密接触结构的流形上,我们能否对这种结构进行分类。我们提出了第一个这样的分类对无限族(大多数)双曲3流形:手术上的数字8结。我们还确定了哪些紧密接触结构是辛可填充的,哪些是普遍紧密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of tight contact structures on surgeries on the figure-eight knot
Two of the basic questions in contact topology are which manifolds admit tight contact structures, and on those that do, can we classify such structures. We present the first such classification on an infinite family of (mostly) hyperbolic 3-manifolds: surgeries on the figure-eight knot. We also determine which of the tight contact structures are symplectically fillable and which are universally tight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信