{"title":"DisCVar","authors":"Harshitha Menon, K. Mohror","doi":"10.1145/3200691.3178502","DOIUrl":null,"url":null,"abstract":"Aggressive technology scaling trends have made the hardware of high performance computing (HPC) systems more susceptible to faults. Some of these faults can lead to silent data corruption (SDC), and represent a serious problem because they alter the HPC simulation results. In this paper, we present a full-coverage, systematic methodology called DisCVar to identify critical variables in HPC applications for protection against SDC. DisCVar uses automatic differentiation (AD) to determine the sensitivity of the simulation output to errors in program variables. We empirically validate our approach in identifying vulnerable variables by comparing the results against a full-coverage code-level fault injection campaign. We find that our DisCVar correctly identifies the variables that are critical to ensure application SDC resilience with a high degree of accuracy compared to the results of the fault injection campaign. Additionally, DisCVar requires only two executions of the target program to generate results, whereas in our experiments we needed to perform millions of executions to get the same information from a fault injection campaign.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"43 1","pages":"195 - 206"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DisCVar\",\"authors\":\"Harshitha Menon, K. Mohror\",\"doi\":\"10.1145/3200691.3178502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aggressive technology scaling trends have made the hardware of high performance computing (HPC) systems more susceptible to faults. Some of these faults can lead to silent data corruption (SDC), and represent a serious problem because they alter the HPC simulation results. In this paper, we present a full-coverage, systematic methodology called DisCVar to identify critical variables in HPC applications for protection against SDC. DisCVar uses automatic differentiation (AD) to determine the sensitivity of the simulation output to errors in program variables. We empirically validate our approach in identifying vulnerable variables by comparing the results against a full-coverage code-level fault injection campaign. We find that our DisCVar correctly identifies the variables that are critical to ensure application SDC resilience with a high degree of accuracy compared to the results of the fault injection campaign. Additionally, DisCVar requires only two executions of the target program to generate results, whereas in our experiments we needed to perform millions of executions to get the same information from a fault injection campaign.\",\"PeriodicalId\":50923,\"journal\":{\"name\":\"ACM Sigplan Notices\",\"volume\":\"43 1\",\"pages\":\"195 - 206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigplan Notices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3200691.3178502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3200691.3178502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Aggressive technology scaling trends have made the hardware of high performance computing (HPC) systems more susceptible to faults. Some of these faults can lead to silent data corruption (SDC), and represent a serious problem because they alter the HPC simulation results. In this paper, we present a full-coverage, systematic methodology called DisCVar to identify critical variables in HPC applications for protection against SDC. DisCVar uses automatic differentiation (AD) to determine the sensitivity of the simulation output to errors in program variables. We empirically validate our approach in identifying vulnerable variables by comparing the results against a full-coverage code-level fault injection campaign. We find that our DisCVar correctly identifies the variables that are critical to ensure application SDC resilience with a high degree of accuracy compared to the results of the fault injection campaign. Additionally, DisCVar requires only two executions of the target program to generate results, whereas in our experiments we needed to perform millions of executions to get the same information from a fault injection campaign.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).