{"title":"基于计算对接和质谱分析的入口阻断肽抑制流感血凝素的分子基础","authors":"R. Lu, P. Müller, K. Downard","doi":"10.1177/2040206615622920","DOIUrl":null,"url":null,"abstract":"Background The increased resistance of circulating strains to current antiviral inhibitors of the influenza virus necessitates that new antivirals and their mode of action are identified. Influenza hemagglutinin is an ideal target given inhibitors of its function can block the entry of the virus into host cells during the early stages of replication. This article describes the molecular basis for the inhibition of H1 and H5 hemagglutinin by an entry-blocker peptide using companion molecular docking and mass spectrometry-based experiments. Methods A combination of hemagglutination inhibition assays, computational molecular docking and a novel mass spectrometry-based approach are employed to explore the mode of action of the entry-blocker peptide at a molecular level. Results The entry-blocker peptide is shown to be able to maximally inhibit blood cell hemagglutination at a concentration of between 6.4 and 9.2 µM. The molecular basis for this inhibition is derived from the binding of the peptide to hemagglutinin in the vicinity of the reported sialic acid binding site surrounded by an α-helix (190-helix) and two loop (130-loop and 220-loop) regions in the case of a H1 hemagglutinin and the second loop region in the case of a H5 hemagglutinin. Conclusions The results support the recognized potential of the entry-blocker peptide as an effective antiviral agent that can inhibit the early stages of viral replication and further illustrate the power of a combination of docking and a mass spectrometry approach to screen the molecular basis of new antiviral inhibitors to the influenza virus.","PeriodicalId":7960,"journal":{"name":"Antiviral Chemistry and Chemotherapy","volume":"46 1","pages":"109 - 117"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Molecular basis of influenza hemagglutinin inhibition with an entry-blocker peptide by computational docking and mass spectrometry\",\"authors\":\"R. Lu, P. Müller, K. Downard\",\"doi\":\"10.1177/2040206615622920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background The increased resistance of circulating strains to current antiviral inhibitors of the influenza virus necessitates that new antivirals and their mode of action are identified. Influenza hemagglutinin is an ideal target given inhibitors of its function can block the entry of the virus into host cells during the early stages of replication. This article describes the molecular basis for the inhibition of H1 and H5 hemagglutinin by an entry-blocker peptide using companion molecular docking and mass spectrometry-based experiments. Methods A combination of hemagglutination inhibition assays, computational molecular docking and a novel mass spectrometry-based approach are employed to explore the mode of action of the entry-blocker peptide at a molecular level. Results The entry-blocker peptide is shown to be able to maximally inhibit blood cell hemagglutination at a concentration of between 6.4 and 9.2 µM. The molecular basis for this inhibition is derived from the binding of the peptide to hemagglutinin in the vicinity of the reported sialic acid binding site surrounded by an α-helix (190-helix) and two loop (130-loop and 220-loop) regions in the case of a H1 hemagglutinin and the second loop region in the case of a H5 hemagglutinin. Conclusions The results support the recognized potential of the entry-blocker peptide as an effective antiviral agent that can inhibit the early stages of viral replication and further illustrate the power of a combination of docking and a mass spectrometry approach to screen the molecular basis of new antiviral inhibitors to the influenza virus.\",\"PeriodicalId\":7960,\"journal\":{\"name\":\"Antiviral Chemistry and Chemotherapy\",\"volume\":\"46 1\",\"pages\":\"109 - 117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral Chemistry and Chemotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2040206615622920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral Chemistry and Chemotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2040206615622920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Molecular basis of influenza hemagglutinin inhibition with an entry-blocker peptide by computational docking and mass spectrometry
Background The increased resistance of circulating strains to current antiviral inhibitors of the influenza virus necessitates that new antivirals and their mode of action are identified. Influenza hemagglutinin is an ideal target given inhibitors of its function can block the entry of the virus into host cells during the early stages of replication. This article describes the molecular basis for the inhibition of H1 and H5 hemagglutinin by an entry-blocker peptide using companion molecular docking and mass spectrometry-based experiments. Methods A combination of hemagglutination inhibition assays, computational molecular docking and a novel mass spectrometry-based approach are employed to explore the mode of action of the entry-blocker peptide at a molecular level. Results The entry-blocker peptide is shown to be able to maximally inhibit blood cell hemagglutination at a concentration of between 6.4 and 9.2 µM. The molecular basis for this inhibition is derived from the binding of the peptide to hemagglutinin in the vicinity of the reported sialic acid binding site surrounded by an α-helix (190-helix) and two loop (130-loop and 220-loop) regions in the case of a H1 hemagglutinin and the second loop region in the case of a H5 hemagglutinin. Conclusions The results support the recognized potential of the entry-blocker peptide as an effective antiviral agent that can inhibit the early stages of viral replication and further illustrate the power of a combination of docking and a mass spectrometry approach to screen the molecular basis of new antiviral inhibitors to the influenza virus.
期刊介绍:
Antiviral Chemistry & Chemotherapy publishes the results of original research concerned with the biochemistry, mode of action, chemistry, pharmacology and virology of antiviral compounds. Manuscripts dealing with molecular biology, animal models and vaccines are welcome. The journal also publishes reviews, pointers, short communications and correspondence.