具有密度的星团的最小周长公式

Vincenzo Scattaglia
{"title":"具有密度的星团的最小周长公式","authors":"Vincenzo Scattaglia","doi":"10.4171/rsmup/120","DOIUrl":null,"url":null,"abstract":"This paper deals with the isoperimetric problem for clusters in a Euclidean space with double density. In particular, we show that a limit of an isoperimetric minimizing sequence of clusters with volumes V is always isoperimetric for its own volumes (which may be smaller than V). In particular, if it is strictly smaller, we provide an explicit formula. Mathematics Subject Classification (2020). Primary: 49Q10. Secondary: 49Q20, 58B20","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"1984 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A formula for the minimal perimeter of clusters with density\",\"authors\":\"Vincenzo Scattaglia\",\"doi\":\"10.4171/rsmup/120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the isoperimetric problem for clusters in a Euclidean space with double density. In particular, we show that a limit of an isoperimetric minimizing sequence of clusters with volumes V is always isoperimetric for its own volumes (which may be smaller than V). In particular, if it is strictly smaller, we provide an explicit formula. Mathematics Subject Classification (2020). Primary: 49Q10. Secondary: 49Q20, 58B20\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"1984 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究双密度欧几里得空间中簇的等周问题。特别地,我们证明了具有体积V的簇的等周最小化序列的极限对于其自身的体积(可能小于V)总是等周的。特别是,如果它严格小于V,我们提供了一个显式公式。数学学科分类(2020)。主:49 q10。次级:49Q20, 58B20
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A formula for the minimal perimeter of clusters with density
This paper deals with the isoperimetric problem for clusters in a Euclidean space with double density. In particular, we show that a limit of an isoperimetric minimizing sequence of clusters with volumes V is always isoperimetric for its own volumes (which may be smaller than V). In particular, if it is strictly smaller, we provide an explicit formula. Mathematics Subject Classification (2020). Primary: 49Q10. Secondary: 49Q20, 58B20
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信