{"title":"具有密度的星团的最小周长公式","authors":"Vincenzo Scattaglia","doi":"10.4171/rsmup/120","DOIUrl":null,"url":null,"abstract":"This paper deals with the isoperimetric problem for clusters in a Euclidean space with double density. In particular, we show that a limit of an isoperimetric minimizing sequence of clusters with volumes V is always isoperimetric for its own volumes (which may be smaller than V). In particular, if it is strictly smaller, we provide an explicit formula. Mathematics Subject Classification (2020). Primary: 49Q10. Secondary: 49Q20, 58B20","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"1984 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A formula for the minimal perimeter of clusters with density\",\"authors\":\"Vincenzo Scattaglia\",\"doi\":\"10.4171/rsmup/120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the isoperimetric problem for clusters in a Euclidean space with double density. In particular, we show that a limit of an isoperimetric minimizing sequence of clusters with volumes V is always isoperimetric for its own volumes (which may be smaller than V). In particular, if it is strictly smaller, we provide an explicit formula. Mathematics Subject Classification (2020). Primary: 49Q10. Secondary: 49Q20, 58B20\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"1984 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A formula for the minimal perimeter of clusters with density
This paper deals with the isoperimetric problem for clusters in a Euclidean space with double density. In particular, we show that a limit of an isoperimetric minimizing sequence of clusters with volumes V is always isoperimetric for its own volumes (which may be smaller than V). In particular, if it is strictly smaller, we provide an explicit formula. Mathematics Subject Classification (2020). Primary: 49Q10. Secondary: 49Q20, 58B20