{"title":"利用自适应网格寻找有影响位置的有效方法","authors":"D. Yan, R. C. Wong, Wilfred Ng","doi":"10.1145/2063576.2063788","DOIUrl":null,"url":null,"abstract":"Given a set S of servers and a set C of clients, an optimal-location query returns a location where a new server can attract the greatest number of clients. Optimal-location queries are important in a lot of real-life applications, such as mobile service planning or resource distribution in an area. Previous studies assume that a client always visits its nearest server, which is too strict to be true in reality. In this paper, we relax this assumption and propose a new model to tackle this problem. We further generalize the problem to finding top-k optimal locations. The main challenge is that, even the fastest approach in existing studies needs to take hours to answer an optimal-location query on a typical real world dataset, which significantly limits the applications of the query. Using our relaxed model, we design an efficient grid-based approximation algorithm called FILM (Fast Influential Location Miner) to the queries, which is orders of magnitude faster than the best-known previous work and the number of clients attracted by a new server in the result location often exceeds 98% of the optimal. The algorithm is extended to finding k influential locations. Extensive experiments are conducted to show the efficiency and effectiveness of FILM on both real and synthetic datasets.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"30 1","pages":"1475-1484"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Efficient methods for finding influential locations with adaptive grids\",\"authors\":\"D. Yan, R. C. Wong, Wilfred Ng\",\"doi\":\"10.1145/2063576.2063788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set S of servers and a set C of clients, an optimal-location query returns a location where a new server can attract the greatest number of clients. Optimal-location queries are important in a lot of real-life applications, such as mobile service planning or resource distribution in an area. Previous studies assume that a client always visits its nearest server, which is too strict to be true in reality. In this paper, we relax this assumption and propose a new model to tackle this problem. We further generalize the problem to finding top-k optimal locations. The main challenge is that, even the fastest approach in existing studies needs to take hours to answer an optimal-location query on a typical real world dataset, which significantly limits the applications of the query. Using our relaxed model, we design an efficient grid-based approximation algorithm called FILM (Fast Influential Location Miner) to the queries, which is orders of magnitude faster than the best-known previous work and the number of clients attracted by a new server in the result location often exceeds 98% of the optimal. The algorithm is extended to finding k influential locations. Extensive experiments are conducted to show the efficiency and effectiveness of FILM on both real and synthetic datasets.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"30 1\",\"pages\":\"1475-1484\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient methods for finding influential locations with adaptive grids
Given a set S of servers and a set C of clients, an optimal-location query returns a location where a new server can attract the greatest number of clients. Optimal-location queries are important in a lot of real-life applications, such as mobile service planning or resource distribution in an area. Previous studies assume that a client always visits its nearest server, which is too strict to be true in reality. In this paper, we relax this assumption and propose a new model to tackle this problem. We further generalize the problem to finding top-k optimal locations. The main challenge is that, even the fastest approach in existing studies needs to take hours to answer an optimal-location query on a typical real world dataset, which significantly limits the applications of the query. Using our relaxed model, we design an efficient grid-based approximation algorithm called FILM (Fast Influential Location Miner) to the queries, which is orders of magnitude faster than the best-known previous work and the number of clients attracted by a new server in the result location often exceeds 98% of the optimal. The algorithm is extended to finding k influential locations. Extensive experiments are conducted to show the efficiency and effectiveness of FILM on both real and synthetic datasets.