Jazmín Aragón Sánchez, M. L. Amigó, C. H. Belussi, M. V. Ale Crivillero, S. Suarez, J. Guimpel, G. Nieva, J. Esteban Gayone, Y. Fasano
{"title":"原子缺陷对FeSe 1−x sx超导晶体电子态的影响","authors":"Jazmín Aragón Sánchez, M. L. Amigó, C. H. Belussi, M. V. Ale Crivillero, S. Suarez, J. Guimpel, G. Nieva, J. Esteban Gayone, Y. Fasano","doi":"10.1088/2515-7639/ac9dc1","DOIUrl":null,"url":null,"abstract":"The electronic properties of Fe-based superconductors are drastically affected by deformations on their crystal structure introduced by doping and pressure. Here we study single crystals of FeSe 1−x S x and reveal that local crystal deformations such as atomic-scale defects impact the spectral shape of the electronic core level states of the material. By means of scanning tunneling microscopy we image S-doping induced defects as well as diluted dumbbell defects associated with Fe vacancies. We have access to the electronic structure of the samples by means of x-ray photoemission spectroscopy (XPS) and show that the spectral shape of the Se core levels can only be adequately described by considering a principal plus a minor component of the electronic states. We find this result for both pure and S-doped samples, irrespective that in the latter case the material presents extra crystal defects associated to doping with S atoms. We argue that the second component in our XPS spectra is associated with the ubiquitous dumbbell defects in FeSe that are known to entail a significant modification of the electronic clouds of surrounding atoms.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"25 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of atomic defects in the electronic states of FeSe 1−x S x superconducting crystals\",\"authors\":\"Jazmín Aragón Sánchez, M. L. Amigó, C. H. Belussi, M. V. Ale Crivillero, S. Suarez, J. Guimpel, G. Nieva, J. Esteban Gayone, Y. Fasano\",\"doi\":\"10.1088/2515-7639/ac9dc1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electronic properties of Fe-based superconductors are drastically affected by deformations on their crystal structure introduced by doping and pressure. Here we study single crystals of FeSe 1−x S x and reveal that local crystal deformations such as atomic-scale defects impact the spectral shape of the electronic core level states of the material. By means of scanning tunneling microscopy we image S-doping induced defects as well as diluted dumbbell defects associated with Fe vacancies. We have access to the electronic structure of the samples by means of x-ray photoemission spectroscopy (XPS) and show that the spectral shape of the Se core levels can only be adequately described by considering a principal plus a minor component of the electronic states. We find this result for both pure and S-doped samples, irrespective that in the latter case the material presents extra crystal defects associated to doping with S atoms. We argue that the second component in our XPS spectra is associated with the ubiquitous dumbbell defects in FeSe that are known to entail a significant modification of the electronic clouds of surrounding atoms.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/ac9dc1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/ac9dc1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Impact of atomic defects in the electronic states of FeSe 1−x S x superconducting crystals
The electronic properties of Fe-based superconductors are drastically affected by deformations on their crystal structure introduced by doping and pressure. Here we study single crystals of FeSe 1−x S x and reveal that local crystal deformations such as atomic-scale defects impact the spectral shape of the electronic core level states of the material. By means of scanning tunneling microscopy we image S-doping induced defects as well as diluted dumbbell defects associated with Fe vacancies. We have access to the electronic structure of the samples by means of x-ray photoemission spectroscopy (XPS) and show that the spectral shape of the Se core levels can only be adequately described by considering a principal plus a minor component of the electronic states. We find this result for both pure and S-doped samples, irrespective that in the latter case the material presents extra crystal defects associated to doping with S atoms. We argue that the second component in our XPS spectra is associated with the ubiquitous dumbbell defects in FeSe that are known to entail a significant modification of the electronic clouds of surrounding atoms.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.