{"title":"内禀随机fitzhuh: Nagumo模型","authors":"Elazab Ns","doi":"10.4172/2168-9679.1000376","DOIUrl":null,"url":null,"abstract":"The Fitzhugh-Nagumo model for excitable systems with a high excitation parameter solves the question of selfoscillatory and self-adaptivity in these systems. This is not the case in systems with low excitation parameter. An intrinsic stochastic model that accounts for endogenous fluctuations is proposed. This model solves the question of self-oscillatory and self-adaptivity in systems with low excitation parameter.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"44 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On an Intrinsic Stochastic Fitzhugh: Nagumo Model\",\"authors\":\"Elazab Ns\",\"doi\":\"10.4172/2168-9679.1000376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fitzhugh-Nagumo model for excitable systems with a high excitation parameter solves the question of selfoscillatory and self-adaptivity in these systems. This is not the case in systems with low excitation parameter. An intrinsic stochastic model that accounts for endogenous fluctuations is proposed. This model solves the question of self-oscillatory and self-adaptivity in systems with low excitation parameter.\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"44 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9679.1000376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Fitzhugh-Nagumo model for excitable systems with a high excitation parameter solves the question of selfoscillatory and self-adaptivity in these systems. This is not the case in systems with low excitation parameter. An intrinsic stochastic model that accounts for endogenous fluctuations is proposed. This model solves the question of self-oscillatory and self-adaptivity in systems with low excitation parameter.