角度约束扳手的最优计算算法

IF 0.4 Q4 MATHEMATICS
Paz Carmi, M. Smid
{"title":"角度约束扳手的最优计算算法","authors":"Paz Carmi, M. Smid","doi":"10.20382/jocg.v3i1a10","DOIUrl":null,"url":null,"abstract":"Let S be a set of n points in ℝ d . A graph G = (S,E) is called a t-spanner for S, if for any two points p and q in S, the shortest-path distance in G between p and q is at most t|pq|, where |pq| denotes the Euclidean distance between p and q. The graph G is called θ-angle-constrained, if any two distinct edges sharing an endpoint make an angle of at least θ. It is shown that, for any θ with 0 < θ < π/3, a θ-angle-constrained t-spanner can be computed in O(n logn) time, where t depends only on θ.","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"47 1","pages":"316-327"},"PeriodicalIF":0.4000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An optimal algorithm for computing angle-constrained spanners\",\"authors\":\"Paz Carmi, M. Smid\",\"doi\":\"10.20382/jocg.v3i1a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let S be a set of n points in ℝ d . A graph G = (S,E) is called a t-spanner for S, if for any two points p and q in S, the shortest-path distance in G between p and q is at most t|pq|, where |pq| denotes the Euclidean distance between p and q. The graph G is called θ-angle-constrained, if any two distinct edges sharing an endpoint make an angle of at least θ. It is shown that, for any θ with 0 < θ < π/3, a θ-angle-constrained t-spanner can be computed in O(n logn) time, where t depends only on θ.\",\"PeriodicalId\":43044,\"journal\":{\"name\":\"Journal of Computational Geometry\",\"volume\":\"47 1\",\"pages\":\"316-327\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v3i1a10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v3i1a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

设S是一个由n个点组成的集合。图G = (S,E)被称为S的t-钳子,如果对于S中的任意两点p和q, G中p和q之间的最短路径距离不超过t|pq|,其中|pq|表示p和q之间的欧几里德距离。图G被称为θ-角约束,如果任意两条不同的边共用一个端点,其夹角至少为θ。证明了对于任意θ < θ < π/3, θ-角约束的t-扳手可以在O(n logn)时间内计算得到,其中t只依赖于θ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimal algorithm for computing angle-constrained spanners
Let S be a set of n points in ℝ d . A graph G = (S,E) is called a t-spanner for S, if for any two points p and q in S, the shortest-path distance in G between p and q is at most t|pq|, where |pq| denotes the Euclidean distance between p and q. The graph G is called θ-angle-constrained, if any two distinct edges sharing an endpoint make an angle of at least θ. It is shown that, for any θ with 0 < θ < π/3, a θ-angle-constrained t-spanner can be computed in O(n logn) time, where t depends only on θ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信