一种新的由解释变量驱动的最小化整数值自回归过程

Pub Date : 2022-12-28 DOI:10.1111/anzs.12379
Lianyong Qian, Fukang Zhu
{"title":"一种新的由解释变量驱动的最小化整数值自回归过程","authors":"Lianyong Qian,&nbsp;Fukang Zhu","doi":"10.1111/anzs.12379","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The discrete minification model based on the modified negative binomial operator, as an extension to the continuous minification model, can be used to describe an extreme value after few increasing values. To make this model more practical and flexible, a new minification integer-valued autoregressive process driven by explanatory variables is proposed. Ergodicity of the new process is discussed. The estimators of the unknown parameters are obtained via the conditional least squares and conditional maximum likelihood methods, and the asymptotic properties are also established. A testing procedure for checking existence of the explanatory variables is developed. Some Monte Carlo simulations are given to illustrate the finite-sample performances of the estimators under specification and misspecification and the test, respectively. A real example is applied to illustrate the performance of our model.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new minification integer-valued autoregressive process driven by explanatory variables\",\"authors\":\"Lianyong Qian,&nbsp;Fukang Zhu\",\"doi\":\"10.1111/anzs.12379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The discrete minification model based on the modified negative binomial operator, as an extension to the continuous minification model, can be used to describe an extreme value after few increasing values. To make this model more practical and flexible, a new minification integer-valued autoregressive process driven by explanatory variables is proposed. Ergodicity of the new process is discussed. The estimators of the unknown parameters are obtained via the conditional least squares and conditional maximum likelihood methods, and the asymptotic properties are also established. A testing procedure for checking existence of the explanatory variables is developed. Some Monte Carlo simulations are given to illustrate the finite-sample performances of the estimators under specification and misspecification and the test, respectively. A real example is applied to illustrate the performance of our model.</p>\\n </div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于修正负二项式算子的离散最小化模型,作为连续最小化模型的扩展,可以用来描述少量增量后的极值。为了使该模型更加实用和灵活,提出了一种新的由解释变量驱动的最小化整值自回归过程。讨论了新工艺的遍历性。通过条件最小二乘和条件极大似然方法得到了未知参数的估计量,并建立了未知参数的渐近性质。开发了检验解释变量是否存在的检验程序。通过蒙特卡罗仿真分别说明了该估计器在规范和不规范情况下的有限样本性能和测试结果。最后用一个实例说明了该模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A new minification integer-valued autoregressive process driven by explanatory variables

The discrete minification model based on the modified negative binomial operator, as an extension to the continuous minification model, can be used to describe an extreme value after few increasing values. To make this model more practical and flexible, a new minification integer-valued autoregressive process driven by explanatory variables is proposed. Ergodicity of the new process is discussed. The estimators of the unknown parameters are obtained via the conditional least squares and conditional maximum likelihood methods, and the asymptotic properties are also established. A testing procedure for checking existence of the explanatory variables is developed. Some Monte Carlo simulations are given to illustrate the finite-sample performances of the estimators under specification and misspecification and the test, respectively. A real example is applied to illustrate the performance of our model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信