非均质坡耕地土壤湿润锋点源扩展试验研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
N. Azizi, Askari Tashakori, E. Maroufpoor, S. Emamgholizadeh
{"title":"非均质坡耕地土壤湿润锋点源扩展试验研究","authors":"N. Azizi, Askari Tashakori, E. Maroufpoor, S. Emamgholizadeh","doi":"10.1680/jwama.21.00107","DOIUrl":null,"url":null,"abstract":"This research intended to measure wetting front advancements (WFA) under various conditions using a physical model. Wetting front advance, along with its distribution in soils, is one of the important parameters in drip irrigation. It is influenced by many factors, including land slope, emitter discharge and soil texture. The effects of these factors were investigated by constructing a physical model with dimensions of 60 cm in width, 120 cm in height and 160 cm in length. The experiments were conducted using two heterogeneous soils, three land slopes (0, 10 and 20%), three emitter discharges (2, 4 and 8 L/h) and a constant volume of irrigation water (24 L). The results of the heterogeneous soils with three horizontal layers were also compared with those of three homogeneous soils (heavy, medium, and light textures). The results indicate that on sloping lands, the wetted area of the WFA downstream from the emitter was, on average, 20–62% greater than upstream from the emitter. With increases in land slope, the wetted depth under the emitter decreased by 3–18%. Also, when land slope changed from 0–10% and then again from 10–20%, the maximum radius of the wetting front increased, on average, by 32%, 44.8% and 77.5% for discharges of 2, 4 and 8 L/h, respectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of the expansion of soil wetting fronts from a point source in heterogeneous sloping lands\",\"authors\":\"N. Azizi, Askari Tashakori, E. Maroufpoor, S. Emamgholizadeh\",\"doi\":\"10.1680/jwama.21.00107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research intended to measure wetting front advancements (WFA) under various conditions using a physical model. Wetting front advance, along with its distribution in soils, is one of the important parameters in drip irrigation. It is influenced by many factors, including land slope, emitter discharge and soil texture. The effects of these factors were investigated by constructing a physical model with dimensions of 60 cm in width, 120 cm in height and 160 cm in length. The experiments were conducted using two heterogeneous soils, three land slopes (0, 10 and 20%), three emitter discharges (2, 4 and 8 L/h) and a constant volume of irrigation water (24 L). The results of the heterogeneous soils with three horizontal layers were also compared with those of three homogeneous soils (heavy, medium, and light textures). The results indicate that on sloping lands, the wetted area of the WFA downstream from the emitter was, on average, 20–62% greater than upstream from the emitter. With increases in land slope, the wetted depth under the emitter decreased by 3–18%. Also, when land slope changed from 0–10% and then again from 10–20%, the maximum radius of the wetting front increased, on average, by 32%, 44.8% and 77.5% for discharges of 2, 4 and 8 L/h, respectively.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jwama.21.00107\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jwama.21.00107","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用物理模型测量不同条件下的润湿锋推进(WFA)。湿润锋推进及其在土壤中的分布是滴灌过程中的重要参数之一。它受许多因素的影响,包括土地坡度、排放物排放和土壤质地。通过建立一个宽60 cm、高120 cm、长160 cm的物理模型,考察了这些因素的影响。试验采用2种非均质土壤、3种坡地(0、10和20%)、3种灌溉水(2、4和8 L/h)和定容灌溉水(24 L)。并将三层非均质土与三种均质土(重、中、轻质地)的结果进行了比较。结果表明:在坡地上,灌丛下游的湿化面积比灌丛上游的湿化面积大20 ~ 62%;随着坡度的增加,灌丛下湿润深度减小3 ~ 18%。当地表坡度从0 ~ 10%变化,再从10 ~ 20%变化时,在流量为2、4和8 L/h时,湿润锋的最大半径平均分别增大32%、44.8%和77.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study of the expansion of soil wetting fronts from a point source in heterogeneous sloping lands
This research intended to measure wetting front advancements (WFA) under various conditions using a physical model. Wetting front advance, along with its distribution in soils, is one of the important parameters in drip irrigation. It is influenced by many factors, including land slope, emitter discharge and soil texture. The effects of these factors were investigated by constructing a physical model with dimensions of 60 cm in width, 120 cm in height and 160 cm in length. The experiments were conducted using two heterogeneous soils, three land slopes (0, 10 and 20%), three emitter discharges (2, 4 and 8 L/h) and a constant volume of irrigation water (24 L). The results of the heterogeneous soils with three horizontal layers were also compared with those of three homogeneous soils (heavy, medium, and light textures). The results indicate that on sloping lands, the wetted area of the WFA downstream from the emitter was, on average, 20–62% greater than upstream from the emitter. With increases in land slope, the wetted depth under the emitter decreased by 3–18%. Also, when land slope changed from 0–10% and then again from 10–20%, the maximum radius of the wetting front increased, on average, by 32%, 44.8% and 77.5% for discharges of 2, 4 and 8 L/h, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信