基于组合的显著目标检测

J. Feng, Yichen Wei, Litian Tao, Chao Zhang, Jian Sun
{"title":"基于组合的显著目标检测","authors":"J. Feng, Yichen Wei, Litian Tao, Chao Zhang, Jian Sun","doi":"10.1109/ICCV.2011.6126348","DOIUrl":null,"url":null,"abstract":"Conventional saliency analysis methods measure the saliency of individual pixels. The resulting saliency map inevitably loses information in the original image and finding salient objects in it is difficult. We propose to detect salient objects by directly measuring the saliency of an image window in the original image and adopt the well established sliding window based object detection paradigm.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"166","resultStr":"{\"title\":\"Salient object detection by composition\",\"authors\":\"J. Feng, Yichen Wei, Litian Tao, Chao Zhang, Jian Sun\",\"doi\":\"10.1109/ICCV.2011.6126348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional saliency analysis methods measure the saliency of individual pixels. The resulting saliency map inevitably loses information in the original image and finding salient objects in it is difficult. We propose to detect salient objects by directly measuring the saliency of an image window in the original image and adopt the well established sliding window based object detection paradigm.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 166

摘要

传统的显著性分析方法测量单个像素的显著性。由此产生的显著性图不可避免地会丢失原始图像中的信息,并且很难在其中找到显著目标。我们建议通过直接测量原始图像中图像窗口的显著性来检测显著目标,并采用已建立的基于滑动窗口的目标检测范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Salient object detection by composition
Conventional saliency analysis methods measure the saliency of individual pixels. The resulting saliency map inevitably loses information in the original image and finding salient objects in it is difficult. We propose to detect salient objects by directly measuring the saliency of an image window in the original image and adopt the well established sliding window based object detection paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信