用方程来解决两个不同的问题

IF 0.3 Q4 MATHEMATICS
S. Bouroubi, Ali Debbache
{"title":"用方程来解决两个不同的问题","authors":"S. Bouroubi, Ali Debbache","doi":"10.12697/acutm.2021.25.10","DOIUrl":null,"url":null,"abstract":"A Thue equation is a Diophantine equation of the form f(x; y) = r, where f is an irreducible binary form of degree at least 3, and r is a given nonzero rational number. A set S of at least three positive integers is called a D13-set if the product of any of its three distinct elements is a perfect cube minus one. We prove that any D13-set is finite and, for any positive integer a, the two-tuple {a, 2a} is extendible to a D13-set 3-tuple, but not to a 4-tuple. Using the well-known Thue equation 2x3 - y3 = 1, we show that the only cubic-triangular number is 1.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"11 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thue's equation as a tool to solve two different problems\",\"authors\":\"S. Bouroubi, Ali Debbache\",\"doi\":\"10.12697/acutm.2021.25.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Thue equation is a Diophantine equation of the form f(x; y) = r, where f is an irreducible binary form of degree at least 3, and r is a given nonzero rational number. A set S of at least three positive integers is called a D13-set if the product of any of its three distinct elements is a perfect cube minus one. We prove that any D13-set is finite and, for any positive integer a, the two-tuple {a, 2a} is extendible to a D13-set 3-tuple, but not to a 4-tuple. Using the well-known Thue equation 2x3 - y3 = 1, we show that the only cubic-triangular number is 1.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2021.25.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2021.25.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图伊方程是丢番图方程,其形式为f(x;Y) = r,其中f为至少3次的不可约二进制形式,r为给定的非零有理数。一个至少有三个正整数的集合S被称为d13集合,如果它的三个不同元素中的任何一个的乘积是一个完全立方减1。证明了任意d13集合是有限的,并且对于任意正整数a,二元组{a, 2a}可扩展为d13集合的3元组,但不能扩展为4元组。利用著名的Thue方程2x3 - y3 = 1,我们证明了唯一的三三角形数是1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thue's equation as a tool to solve two different problems
A Thue equation is a Diophantine equation of the form f(x; y) = r, where f is an irreducible binary form of degree at least 3, and r is a given nonzero rational number. A set S of at least three positive integers is called a D13-set if the product of any of its three distinct elements is a perfect cube minus one. We prove that any D13-set is finite and, for any positive integer a, the two-tuple {a, 2a} is extendible to a D13-set 3-tuple, but not to a 4-tuple. Using the well-known Thue equation 2x3 - y3 = 1, we show that the only cubic-triangular number is 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信