{"title":"预测气候变化下迁徙蚱蜢招募的地理变异","authors":"J. Humphreys, R. B. Srygley, D. Branson","doi":"10.3390/geographies2010003","DOIUrl":null,"url":null,"abstract":"Climate change is expected to alter prevailing temperature, precipitation, cloud cover, and humidity this century, thereby modifying insect demographic processes and possibly increasing the frequency and intensity of rangeland and crop impacts by pest insects. We leveraged ten years of migratory grasshopper (Melanoplus sanguinipes) field surveys to assess the response of nymph recruitment to projected climate conditions through the year 2040. Melanoplus sanguinipes is the foremost pest of grain, oilseed, pulse, and rangeland forage crops in the western United States. To assess nymph recruitment, we developed a multi-level, joint modeling framework that individually assessed nymph and adult life stages while concurrently incorporating density-dependence and accounting for observation bias connected to preferential sampling. Our results indicated that nymph recruitment rates will exhibit strong geographic variation under projected climate change, with population sizes at many locations being comparable to those historically observed, but other locations experiencing increased insect abundances. Our findings suggest that alterations to prevailing temperature and precipitation regimes as instigated by climate change will amplify recruitment, thereby enlarging population sizes and potentially intensifying agricultural pest impacts by 2040.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change\",\"authors\":\"J. Humphreys, R. B. Srygley, D. Branson\",\"doi\":\"10.3390/geographies2010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change is expected to alter prevailing temperature, precipitation, cloud cover, and humidity this century, thereby modifying insect demographic processes and possibly increasing the frequency and intensity of rangeland and crop impacts by pest insects. We leveraged ten years of migratory grasshopper (Melanoplus sanguinipes) field surveys to assess the response of nymph recruitment to projected climate conditions through the year 2040. Melanoplus sanguinipes is the foremost pest of grain, oilseed, pulse, and rangeland forage crops in the western United States. To assess nymph recruitment, we developed a multi-level, joint modeling framework that individually assessed nymph and adult life stages while concurrently incorporating density-dependence and accounting for observation bias connected to preferential sampling. Our results indicated that nymph recruitment rates will exhibit strong geographic variation under projected climate change, with population sizes at many locations being comparable to those historically observed, but other locations experiencing increased insect abundances. Our findings suggest that alterations to prevailing temperature and precipitation regimes as instigated by climate change will amplify recruitment, thereby enlarging population sizes and potentially intensifying agricultural pest impacts by 2040.\",\"PeriodicalId\":38507,\"journal\":{\"name\":\"Human Geographies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Geographies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geographies2010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies2010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change
Climate change is expected to alter prevailing temperature, precipitation, cloud cover, and humidity this century, thereby modifying insect demographic processes and possibly increasing the frequency and intensity of rangeland and crop impacts by pest insects. We leveraged ten years of migratory grasshopper (Melanoplus sanguinipes) field surveys to assess the response of nymph recruitment to projected climate conditions through the year 2040. Melanoplus sanguinipes is the foremost pest of grain, oilseed, pulse, and rangeland forage crops in the western United States. To assess nymph recruitment, we developed a multi-level, joint modeling framework that individually assessed nymph and adult life stages while concurrently incorporating density-dependence and accounting for observation bias connected to preferential sampling. Our results indicated that nymph recruitment rates will exhibit strong geographic variation under projected climate change, with population sizes at many locations being comparable to those historically observed, but other locations experiencing increased insect abundances. Our findings suggest that alterations to prevailing temperature and precipitation regimes as instigated by climate change will amplify recruitment, thereby enlarging population sizes and potentially intensifying agricultural pest impacts by 2040.