广义学习系统及其结构变异

C. L. P. Chen
{"title":"广义学习系统及其结构变异","authors":"C. L. P. Chen","doi":"10.1109/SISY.2018.8524681","DOIUrl":null,"url":null,"abstract":"After a very fast and efficient discriminative Broad Learning System (BLS) that takes advantage of flatted structure and incremental learning has been developed, this talk will discuss mathematical proof of the universal approximation property of BLS. In addition, the framework of several BLS variants with their mathematical modellings are given. The variations include cascade, recurrent, and broad-deep combination that cover existing deep-wide/broad-wide structures. From the experimental results, the BLS and its variations outperforms several exist learning algorithms on regression performance over function approximation, time series prediction, and face recognition databases.","PeriodicalId":6647,"journal":{"name":"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"15 1","pages":"000011-00012"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Broad Learning System and its Structural Variations\",\"authors\":\"C. L. P. Chen\",\"doi\":\"10.1109/SISY.2018.8524681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After a very fast and efficient discriminative Broad Learning System (BLS) that takes advantage of flatted structure and incremental learning has been developed, this talk will discuss mathematical proof of the universal approximation property of BLS. In addition, the framework of several BLS variants with their mathematical modellings are given. The variations include cascade, recurrent, and broad-deep combination that cover existing deep-wide/broad-wide structures. From the experimental results, the BLS and its variations outperforms several exist learning algorithms on regression performance over function approximation, time series prediction, and face recognition databases.\",\"PeriodicalId\":6647,\"journal\":{\"name\":\"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"15 1\",\"pages\":\"000011-00012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2018.8524681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2018.8524681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在开发了一种利用扁平结构和增量学习的非常快速有效的判别广义学习系统(BLS)之后,本讲座将讨论BLS全称近似性质的数学证明。此外,还给出了几种BLS变体的框架及其数学模型。这些变化包括级联、循环和覆盖现有深-宽/宽结构的宽-深组合。从实验结果来看,BLS及其变体在函数逼近、时间序列预测和人脸识别数据库的回归性能上优于几种现有的学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broad Learning System and its Structural Variations
After a very fast and efficient discriminative Broad Learning System (BLS) that takes advantage of flatted structure and incremental learning has been developed, this talk will discuss mathematical proof of the universal approximation property of BLS. In addition, the framework of several BLS variants with their mathematical modellings are given. The variations include cascade, recurrent, and broad-deep combination that cover existing deep-wide/broad-wide structures. From the experimental results, the BLS and its variations outperforms several exist learning algorithms on regression performance over function approximation, time series prediction, and face recognition databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信