外部静电力激励下基于mems的角速率传感器动力学研究

Ibrahim F. Gebrel, Ligang Wang, S. Asokanthan
{"title":"外部静电力激励下基于mems的角速率传感器动力学研究","authors":"Ibrahim F. Gebrel, Ligang Wang, S. Asokanthan","doi":"10.1115/IMECE2020-24178","DOIUrl":null,"url":null,"abstract":"\n This paper investigates the dynamic behavior of rotating MEMS-based vibratory gyroscopes which employs a thin ring as the vibrating flexible element. The mathematical model for the MEMS ring structure as well as a model for the nonlinear electrostatic excitation forces are formulated. Galerkin’s procedure is employed to reduce the equations of motion to a set of ordinary differential equations. Understanding the effects of nonlinear actuator dynamics is considered important for characterizing the dynamic behavior of such devices. A suitable theoretical model to generate nonlinear electrostatic force that acts on the MEMS ring structure is formulated. Dynamic responses in the driving and the sensing directions are examined via time responses, phase diagram, and Poincare’ map plots when the input angular motion and the nonlinear electrostatic force are considered simultaneously. The analysis is envisaged to aid fabrication of this class of devices as well as for providing design improvements in MEMS Ring-based Gyroscopes.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics of MEMS-Based Angular Rate Sensors Excited via External Electrostatic Forces\",\"authors\":\"Ibrahim F. Gebrel, Ligang Wang, S. Asokanthan\",\"doi\":\"10.1115/IMECE2020-24178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper investigates the dynamic behavior of rotating MEMS-based vibratory gyroscopes which employs a thin ring as the vibrating flexible element. The mathematical model for the MEMS ring structure as well as a model for the nonlinear electrostatic excitation forces are formulated. Galerkin’s procedure is employed to reduce the equations of motion to a set of ordinary differential equations. Understanding the effects of nonlinear actuator dynamics is considered important for characterizing the dynamic behavior of such devices. A suitable theoretical model to generate nonlinear electrostatic force that acts on the MEMS ring structure is formulated. Dynamic responses in the driving and the sensing directions are examined via time responses, phase diagram, and Poincare’ map plots when the input angular motion and the nonlinear electrostatic force are considered simultaneously. The analysis is envisaged to aid fabrication of this class of devices as well as for providing design improvements in MEMS Ring-based Gyroscopes.\",\"PeriodicalId\":23585,\"journal\":{\"name\":\"Volume 7A: Dynamics, Vibration, and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7A: Dynamics, Vibration, and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2020-24178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-24178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了采用薄环作为振动柔性元件的旋转mems振动陀螺仪的动态特性。建立了MEMS环形结构的数学模型和非线性静电激振力的数学模型。采用伽辽金法将运动方程化为一组常微分方程。了解非线性作动器动力学的影响对于表征这类装置的动态行为是重要的。建立了一个适用于产生作用于MEMS环结构的非线性静电力的理论模型。同时考虑输入角运动和非线性静电力时,通过时间响应、相位图和庞加莱图分析了驱动方向和传感方向的动态响应。预计该分析将有助于制造这类设备,并为MEMS环式陀螺仪提供设计改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of MEMS-Based Angular Rate Sensors Excited via External Electrostatic Forces
This paper investigates the dynamic behavior of rotating MEMS-based vibratory gyroscopes which employs a thin ring as the vibrating flexible element. The mathematical model for the MEMS ring structure as well as a model for the nonlinear electrostatic excitation forces are formulated. Galerkin’s procedure is employed to reduce the equations of motion to a set of ordinary differential equations. Understanding the effects of nonlinear actuator dynamics is considered important for characterizing the dynamic behavior of such devices. A suitable theoretical model to generate nonlinear electrostatic force that acts on the MEMS ring structure is formulated. Dynamic responses in the driving and the sensing directions are examined via time responses, phase diagram, and Poincare’ map plots when the input angular motion and the nonlinear electrostatic force are considered simultaneously. The analysis is envisaged to aid fabrication of this class of devices as well as for providing design improvements in MEMS Ring-based Gyroscopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信