基于小波线性二次型增益调度的主动调谐质量阻尼器水平轴风力机塔架前后振动优化控制

Arka Mitra, Yamini Giridharan, A. Chakraborty
{"title":"基于小波线性二次型增益调度的主动调谐质量阻尼器水平轴风力机塔架前后振动优化控制","authors":"Arka Mitra, Yamini Giridharan, A. Chakraborty","doi":"10.1002/stc.3055","DOIUrl":null,"url":null,"abstract":"This paper presents a wavelet‐based strategy for fore‐aft vibration control of onshore horizontal axis wind turbine tower. For this purpose, an active tuned mass damper is combined with an aero‐servo‐elastic turbine model in the multi‐body framework. The combined system is exposed to turbulent wind and seismic ground motion to investigate the controller performance in extreme operating conditions. The optimal tuning is achieved by frequency‐dependent gain scheduling via wavelet transform. Analytic Morse wavelet is used as a basis function for transforming the input and feedback to recast the classical linear quadratic regulator (LQR) in the time‐frequency domain over a finite time horizon. The scale‐dependent differential Riccati equations are solved for optimal gains, which are used to estimate the optimal control force. Numerical studies presented in this paper demonstrate the advantage of the proposed gain scheduling over classical LQR. The efficiency of the proposed algorithm is verified using different flow conditions and seismic input, where the performance is compared with benchmark results.","PeriodicalId":22049,"journal":{"name":"Structural Control and Health Monitoring","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wavelet linear quadratic regulator‐based gain scheduling for optimal fore‐aft vibration control of horizontal axis wind turbine tower using active tuned mass damper\",\"authors\":\"Arka Mitra, Yamini Giridharan, A. Chakraborty\",\"doi\":\"10.1002/stc.3055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a wavelet‐based strategy for fore‐aft vibration control of onshore horizontal axis wind turbine tower. For this purpose, an active tuned mass damper is combined with an aero‐servo‐elastic turbine model in the multi‐body framework. The combined system is exposed to turbulent wind and seismic ground motion to investigate the controller performance in extreme operating conditions. The optimal tuning is achieved by frequency‐dependent gain scheduling via wavelet transform. Analytic Morse wavelet is used as a basis function for transforming the input and feedback to recast the classical linear quadratic regulator (LQR) in the time‐frequency domain over a finite time horizon. The scale‐dependent differential Riccati equations are solved for optimal gains, which are used to estimate the optimal control force. Numerical studies presented in this paper demonstrate the advantage of the proposed gain scheduling over classical LQR. The efficiency of the proposed algorithm is verified using different flow conditions and seismic input, where the performance is compared with benchmark results.\",\"PeriodicalId\":22049,\"journal\":{\"name\":\"Structural Control and Health Monitoring\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control and Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/stc.3055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control and Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/stc.3055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于小波变换的陆上水平轴风力机塔架前后振动控制策略。为此,在多体框架中,将主动调谐质量阻尼器与气动伺服弹性涡轮模型相结合。该组合系统暴露于湍流风和地震地面运动中,以研究控制器在极端工作条件下的性能。最优调谐是通过小波变换的频率相关增益调度实现的。利用解析莫尔斯小波作为基函数对输入和反馈进行变换,在有限时间范围内对经典线性二次型稳压器(LQR)进行时频重构。求解了与尺度相关的Riccati微分方程的最优增益,并将其用于估计最优控制力。本文的数值研究证明了所提出的增益调度优于经典LQR。采用不同的流动条件和地震输入验证了该算法的有效性,并与基准结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet linear quadratic regulator‐based gain scheduling for optimal fore‐aft vibration control of horizontal axis wind turbine tower using active tuned mass damper
This paper presents a wavelet‐based strategy for fore‐aft vibration control of onshore horizontal axis wind turbine tower. For this purpose, an active tuned mass damper is combined with an aero‐servo‐elastic turbine model in the multi‐body framework. The combined system is exposed to turbulent wind and seismic ground motion to investigate the controller performance in extreme operating conditions. The optimal tuning is achieved by frequency‐dependent gain scheduling via wavelet transform. Analytic Morse wavelet is used as a basis function for transforming the input and feedback to recast the classical linear quadratic regulator (LQR) in the time‐frequency domain over a finite time horizon. The scale‐dependent differential Riccati equations are solved for optimal gains, which are used to estimate the optimal control force. Numerical studies presented in this paper demonstrate the advantage of the proposed gain scheduling over classical LQR. The efficiency of the proposed algorithm is verified using different flow conditions and seismic input, where the performance is compared with benchmark results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信