{"title":"a-Si太阳能电池的亚稳态分流路径","authors":"T. J. McMahon, M. Bennett","doi":"10.1109/WCPEC.1994.519995","DOIUrl":null,"url":null,"abstract":"The transitory and erratic nature of shunt currents, whether caused by light-soaking or electrical biasing, in amorphous Si (a-Si) single- and triple-junction solar cells has been a real puzzle and made the study of these cells difficult. The authors present a careful study of the time/voltage dependence of these current transients in several different a-Si solar cell structures and find they reveal more about the basic shunt mechanism. In single-junction cells, they see stepwise current changes that increase in size and number with reverse bias and can be removed with forward bias. This stepwise, on and off switching suggests a discrete shunt path conduction mechanism. The kinetics of these metastable shunt paths show that both the \"on-state\" and \"off-state\" possess memory. Cells without (Al)ZnO show no metastable switching. The authors associate the stepwise features with the textured substrate and the switching metastability with contact to (Al)ZnO. Switching in triple-junction cells occurs with hundreds of oscillations at each step.","PeriodicalId":20517,"journal":{"name":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Metastable shunt paths in a-Si solar cells\",\"authors\":\"T. J. McMahon, M. Bennett\",\"doi\":\"10.1109/WCPEC.1994.519995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transitory and erratic nature of shunt currents, whether caused by light-soaking or electrical biasing, in amorphous Si (a-Si) single- and triple-junction solar cells has been a real puzzle and made the study of these cells difficult. The authors present a careful study of the time/voltage dependence of these current transients in several different a-Si solar cell structures and find they reveal more about the basic shunt mechanism. In single-junction cells, they see stepwise current changes that increase in size and number with reverse bias and can be removed with forward bias. This stepwise, on and off switching suggests a discrete shunt path conduction mechanism. The kinetics of these metastable shunt paths show that both the \\\"on-state\\\" and \\\"off-state\\\" possess memory. Cells without (Al)ZnO show no metastable switching. The authors associate the stepwise features with the textured substrate and the switching metastability with contact to (Al)ZnO. Switching in triple-junction cells occurs with hundreds of oscillations at each step.\",\"PeriodicalId\":20517,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCPEC.1994.519995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCPEC.1994.519995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The transitory and erratic nature of shunt currents, whether caused by light-soaking or electrical biasing, in amorphous Si (a-Si) single- and triple-junction solar cells has been a real puzzle and made the study of these cells difficult. The authors present a careful study of the time/voltage dependence of these current transients in several different a-Si solar cell structures and find they reveal more about the basic shunt mechanism. In single-junction cells, they see stepwise current changes that increase in size and number with reverse bias and can be removed with forward bias. This stepwise, on and off switching suggests a discrete shunt path conduction mechanism. The kinetics of these metastable shunt paths show that both the "on-state" and "off-state" possess memory. Cells without (Al)ZnO show no metastable switching. The authors associate the stepwise features with the textured substrate and the switching metastability with contact to (Al)ZnO. Switching in triple-junction cells occurs with hundreds of oscillations at each step.