圆的关键映射命中次数的渐近分布

IF 0.6 Q3 MATHEMATICS
Sh. A. Ayupov, A. A. Zhalilov
{"title":"圆的关键映射命中次数的渐近分布","authors":"Sh. A. Ayupov, A. A. Zhalilov","doi":"10.35634/vm210302","DOIUrl":null,"url":null,"abstract":"It is well known that the renormalization group transformation $\\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\\overline{\\rho}:=\\frac{\\sqrt{5}-1}{2}.$ Denote by $Cr(\\overline{\\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\\in Cr(\\overline{\\rho})$ and let $\\mu:=\\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\\theta \\in(0,1).$ For each $n\\geq1$ define $c_{n}:=c_{n}(\\theta)$ such that $\\mu([x_{cr},c_{n}])=\\theta\\cdot\\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\\overline{\\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w.r.t. the Lebesgue measure.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":"24 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic distribution of hitting times for critical maps of the circle\",\"authors\":\"Sh. A. Ayupov, A. A. Zhalilov\",\"doi\":\"10.35634/vm210302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the renormalization group transformation $\\\\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\\\\overline{\\\\rho}:=\\\\frac{\\\\sqrt{5}-1}{2}.$ Denote by $Cr(\\\\overline{\\\\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\\\\in Cr(\\\\overline{\\\\rho})$ and let $\\\\mu:=\\\\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\\\\theta \\\\in(0,1).$ For each $n\\\\geq1$ define $c_{n}:=c_{n}(\\\\theta)$ such that $\\\\mu([x_{cr},c_{n}])=\\\\theta\\\\cdot\\\\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\\\\overline{\\\\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w.r.t. the Lebesgue measure.\",\"PeriodicalId\":43239,\"journal\":{\"name\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm210302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm210302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

重整化群变换是众所周知的 $\mathcal{R}$ 有一个唯一的固定点吗 $f_{cr}$ 在空间的关键 $C^{3}$具有一个三次临界点的-圆同胚 $x_{cr}$ 和黄金平均旋转数 $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ 表示为 $Cr(\overline{\rho})$ 所有关键圆映射的集合 $C^{1}$-共轭于 $f_{cr}.$ 让 $f\in Cr(\overline{\rho})$ 让 $\mu:=\mu_{f}$ 的唯一概率不变测度 $f.$ 修复 $\theta \in(0,1).$ 对于每一个 $n\geq1$ 定义 $c_{n}:=c_{n}(\theta)$ 这样 $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ 在哪里 $q_{n}$ 线性旋转的第一次返回时间是多少 $f_{\overline{\rho}}.$ 研究了时间命中重标点过程的收敛性规律。我们证明极限分布在勒贝格测度下是奇异的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic distribution of hitting times for critical maps of the circle
It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w.r.t. the Lebesgue measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信