异常扩散中混合检测的渐近理论

Kui Zhang, G. Didier
{"title":"异常扩散中混合检测的渐近理论","authors":"Kui Zhang, G. Didier","doi":"10.1063/5.0023227","DOIUrl":null,"url":null,"abstract":"In this paper, starting from the methodology proposed in Magdziarz and Weron (2011), we develop asymptotic theory for the detection of mixing in Gaussian anomalous diffusion. The assumptions cover a broad family of stochastic processes including fractional Gaussian noise and the fractional Ornstein-Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic theory for the detection of mixing in anomalous diffusion\",\"authors\":\"Kui Zhang, G. Didier\",\"doi\":\"10.1063/5.0023227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, starting from the methodology proposed in Magdziarz and Weron (2011), we develop asymptotic theory for the detection of mixing in Gaussian anomalous diffusion. The assumptions cover a broad family of stochastic processes including fractional Gaussian noise and the fractional Ornstein-Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0023227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0023227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,从Magdziarz和Weron(2011)提出的方法开始,我们发展了用于检测高斯异常扩散中混合的渐近理论。这些假设涵盖了广泛的随机过程,包括分数阶高斯噪声和分数阶Ornstein-Uhlenbeck过程。我们证明了检测统计量的渐近分布和收敛速率可以是高斯分布或非高斯分布,可以是标准分布或非标准分布,这取决于扩散指数。该结果为基于单个观察样品路径的混合检测铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic theory for the detection of mixing in anomalous diffusion
In this paper, starting from the methodology proposed in Magdziarz and Weron (2011), we develop asymptotic theory for the detection of mixing in Gaussian anomalous diffusion. The assumptions cover a broad family of stochastic processes including fractional Gaussian noise and the fractional Ornstein-Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信