{"title":"有效俘获截面对InAs/GaAs量子点太阳能电池生成复合速率的影响","authors":"Ahna Sharan, J. Kumar","doi":"10.1109/NUSOD52207.2021.9541495","DOIUrl":null,"url":null,"abstract":"Quantum dot solar cell structures have been theoretically analysed to study the impact of effective capture cross sections on quantum dot generation-recombination processes. The Poisson’s and continuity equation were solved self-consistently to obtain electrostatic potential, electron and hole carrier distribution, and electron filling of the QDs. The occupation probability of the QDs was used to estimate the effective capture cross-sections under different doping and bias condition.","PeriodicalId":6780,"journal":{"name":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"67 1","pages":"59-60"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of effective capture cross section on generation-recombination rate in InAs/GaAs quantum dot solar cell\",\"authors\":\"Ahna Sharan, J. Kumar\",\"doi\":\"10.1109/NUSOD52207.2021.9541495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum dot solar cell structures have been theoretically analysed to study the impact of effective capture cross sections on quantum dot generation-recombination processes. The Poisson’s and continuity equation were solved self-consistently to obtain electrostatic potential, electron and hole carrier distribution, and electron filling of the QDs. The occupation probability of the QDs was used to estimate the effective capture cross-sections under different doping and bias condition.\",\"PeriodicalId\":6780,\"journal\":{\"name\":\"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"67 1\",\"pages\":\"59-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD52207.2021.9541495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD52207.2021.9541495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of effective capture cross section on generation-recombination rate in InAs/GaAs quantum dot solar cell
Quantum dot solar cell structures have been theoretically analysed to study the impact of effective capture cross sections on quantum dot generation-recombination processes. The Poisson’s and continuity equation were solved self-consistently to obtain electrostatic potential, electron and hole carrier distribution, and electron filling of the QDs. The occupation probability of the QDs was used to estimate the effective capture cross-sections under different doping and bias condition.